Table of Contents

About Biotas... 4
Getting Started.. 4
Open Data File.. 4
Close File... 4
Open Overlay File... 4
Selecting Files.. 5
Database.. 5
Show Data Modifiers... 5
Printing... 5
Save File... 5
Save the Work Space.. 6
Sort Data... 6
Graphics... 6
Colors and Symbols.. 6
Data Filters.. 8
Stratify Data... 8
Subset Data... 8
Subset and Filter Examples.. 9
Linking Files... 10
Data Analysis... 11
Descriptive Statistics... 11
Spatial Association.. 11
Density Binning.. 11
Spatial Analysis... 12
Point Pattern Analysis Basics.. 12
CSR - Complete Spatial Randomness... 12
CSR - Contiguous Quadrats... 12
CSR - Scattered Quadrats.. 13
Quadrat Variance... 14
Spatial Autocorrelation.. 14
Home Range... 16
About Home Ranges... 16
Data Area Curves.. 16
Plotting Data... 16
Confidence Intervals... 17
Overview of Home Range Methods.. 17
Buffer Points.. 17
Minimum Convex Polygon.. 18
Confidence Ellipse... 18
Harmonic Mean... 19
Kernel... 19
Voronoi Polygons.. 20
Habitat Use... 21
Habitat Analysis - Type I Design.. 21
Habitat Analysis - Type II Design.. 21
Habitat Analysis - Type III Design.. 22
Compositional Analysis... 22
Compositional Analysis - Data Format Options.. 22
Compositional Analysis - Home Range Level... 22
Compositional Analysis - Study Site Level.. 23
Neu's Method.. 23
Neu's Result Fields... 24
Neu's Habitat Proportions... 24
Movement Analysis... 26
Movements.. 26
Circular Statistics... 26
Linear Statistics... 26
Regression and Correlation... 27
Regression... 27
Pascal Scripts	51
PASCAL Scripts - Basics	51
PASCAL Scripts - Variables	51
PASCAL Scripts - Structure	52
PASCAL Scripts - Procedures and Functions	53
PASCAL Scripts - Control Statements	54
PASCAL Scripts - Arrays	56
PASCAL Scripts - Conventions	57
Available Functions	58
Array Functions	58
String Functions	59
Trigonometry Functions	60
Random Functions	61
Linear regression	27
Polynomial regression	27
Temporal Autocorrelation	27
Runs Test	28
Sampling	29
Random Sampling	29
Simple Random Sampling	29
Stratified Random Sampling	29
Computer Aided Design	30
Add Shape	30
Adjust Lines	30
Adjust Points	30
Adjust Polygons	31
Altering Shapes	31
Charts and Graphs	32
Geographical Information (GIS)	34
Identify Data	34
Plotting Data	34
Zooming	34
Finding Distances	34
Grab and Move	35
Spatial Analysis	35
Create Buffers	35
Creating a Grid	35
Merge Overlays	37
Shape Overlap	37
Point in Polygon	38
Projections	39
Datums	39
Equatorial Mercator	40
Lambert Conformal	40
Latitude and longitude	41
Stereographic projection	43
Universal Transverse Mercator (UTM).	43
Grids	45
Creating a Grid	45
Grid Size	45
Grid Colors	46
Grid Confinement	46
Grid Limitations	46
Simulated Data	47
Simulated Point Patterns	47
Simulated Data - Simple Distributions	47
Simulated Data - Complex Distributions	47
Simulated Data - User Defined Random Data	48
Simulated Data - Random Data Limits	48
Permutations	49
Data Permutation Example	49
Grids	54
Creating a Grid	54
Grid Size	54
Grid Colors	54
Grid Confinement	55
Grid Limitations	55
Simulated Data	57
Simulated Point Patterns	57
Simulated Data - Simple Distributions	57
Simulated Data - Complex Distributions	57
Simulated Data - User Defined Random Data	57
Simulated Data - Random Data Limits	57
Permutations	58
Data Permutation Example	58
Grids	58
Creating a Grid	58
Grid Size	58
Grid Colors	58
Grid Confinement	58
Grid Limitations	58
Simulated Data	59
Simulated Point Patterns	59
Simulated Data - Simple Distributions	59
Simulated Data - Complex Distributions	59
Simulated Data - User Defined Random Data	59
Simulated Data - Random Data Limits	59
About Biotas

Biotas is software designed to analyse spatial data. You may evaluate Biotas for a fixed time period determined by the software. After the evaluation time has expired, you may either purchase an access code to license your copy of Biotas or you must remove the software from your computer. Use the standard Windows® "Add/Remove Programs" option available from the Windows® Control Panel.

Getting Started

Open Data File

Menu: Files > Open Data File

Biotas opens several basic data file types including database files, Excel files, and text files. Overlays of shape or geographical features can also be opened and accessed by Biotas.

Database files may either be a dBASE (*.dbf), Paradox (*.db), or Microsoft® Access (*.mdb) file format. Text files should be stored in either comma (often with the *.csv or *.txt extension) or tab separated values (usually *.txt). Any of these text file formats may be created from most common database and spreadsheet programs. If a comma or tab is not found in text file data record, the each record in the text file will be parsed by spaces. This is an inconsistent method of data storage and Biotas uses it only as a legacy format. All new text files should be either tab or comma delineated.

When a file is opened, Biotas will present a variable definition screen where at least the fields that represent data point locations, "X,Y" must be defined. Once these fields are defined all files with the same point location fields will open without requiring redefinition. Other options include selecting the variables that include date and time data if time dependent analysis is to be performed.

Close File

Menu: File > Close File

The close file dialog box allows for closing of all files that were opened or generated (e.g. home range contours). Closing a file deletes them from local memory but not from a disk drive. If generated files were not first saved to a disk, then they will be permanently deleted.

Clicking on the 'Close Files' button will close the files. Click on the 'Finished' button to exit this window.

Open Overlay File

Menu: File > Open File > Open Overlay

File Overlay imports formats currently supported include ArcView® shape files (*.shp), MapInfo (*.mpf), and Data Interchange (*.dxf) formats.
Graphical results can also be exported to an ArcView® compatible shape file format. Previous results can, therefore, be imported later as a coverage for comparison without having to re-analyze the data.

An overlay file can be opened in two ways. Either directly from either the menu item "File/Open Files" or "File/Open Overlay Files". Two methods of opening overlays are provided because (1) data files may be of the type "Point" and (2) it is an easy and convenient way to open all files through a common interface.

However, the standard open file option will only go to the specific folder designated for data files and display files corresponding to the default file extension. This can be a problem with ArcView® shape files when Windows® has registered file extensions turned off (the Windows® default state) since the supporting database for a shape file will have the same name as the shape file (only the non-displayed file extension is different). Thus the database file may appear to be the shape file to open. This will happen if the default file extension is set to "dBASE (*.dbf). By opening overlays with the "File/Open Overlay Files" menu item this can be avoided.

Selecting Files

Most forms that process data display a list view of the data file names, point or shape count, and the file type. Also displayed are the file’s display attributes. You may click on any column header to sort the columns by type. Left click on the check box to the left of each data file that you wish to process in an analysis. Right click to check or uncheck all the files.

Database

Databases consist of row and columns (also known as fields) of data. The records represent the individual data in any one row and field combination. Each field require a unique name in the database.

Show Data Modifiers

Menu: Data > Show Modifiers

The data modifiers window displays generic information and all the active modifiers for a file.

This display if for information content only. Changes to these modifiers must be performed in the respective modifier's window.

Printing

Menu: File > Print

Currently, printing is for the graphics canvas and charts only. Data and output log information can be copied and pasted into a spreadsheet, wordprocessor, or database program for printing.

Save File

Menu: File > Save

Shape Viewer saves files in a variety of formats depending on the data to be saved.
Data files are saved as database or text files.

Graphics are saved as Windows® Metafiles, Bitmaps and JPEG files, ArcView® shape files or Data Interchange Format (*.dxf) files.

The graphic canvas and charts can also be saved to the Windows® clipboard to be copied and pasted into other applications, such as word processors.

To save a data file, first select the file as the active spreadsheet tab. Select "Save" or "Save As" from the main menu. Select "Spreadsheet" as the file type to save. You will be presented with a New Database dialog window. Select the fields you want to export and continue to save the file.

Save the Work Space

Menu: File > Save Work Space

If this menu item is clicked, then any currently opened shapes will be available for reopening at once by clicking on the "open last work space" menu item. Only files that already have disk based file names will be saved and reopened. Shapes that are generated but not stored, such as home range contours, will not be stored and retrieved.

Sort Data

Menu: Data > Sort

Files may be sorted on any of the field variables. Sorting may be done on both single file and linked files. To sort data select the fields in order of the sort. That is, the field selected first will be sorted first and then the field selected second will be sorted second, etc.. If the check box next to the field name is checked the data will be sorted in ascending order, if it is unchecked then the data in that field will be sorted in descending order.

When linked databases are used it is usually necessary to either apply an index on the fields or perform a sort because linked databases will by default sort on the linked field. Therefore, if this is not the normal order of the data, it is necessary to force the data to be retrieved in a more normal order using a sort.

Graphics

To select what files/shapes to plot check the box next to the file SHAPE in the legend. If the shape is not checked, it will not be plotted in the graphics canvas. To change the colors of a shape outline left click on the desired color in the color bar. More color options can be found by pressing the ">>>" button to the right of the color bar.

The color selected will be identified by the "FG" letters (Foreground). Change the point style by left clicking on one of the options on the "Point Styles" tab. The shapes will be filled if the "fill shape" box is check. On the "Line and Fill Styles" tab page, click on either the lines or fill styles buttons provided.

Colors and Symbols

Menu: Canvas > Colors and Symbols

This form is used to make changes to display graphics colors and styles. To make individual changes to a shape's graphic styles quickly, use the built in functions on the Legend Tab.
Once all the desired shape styles has been selected click on the "Apply" button to make the changes permanent. Changes will only be displayed on the canvas when the "Update" button is clicked. This is to prevent constant and often lengthy redrawing while changing many graphic style options.

Files may also automatically have their color and line styles changed when each file is loaded by selecting the desired option from the "on new file" button.
Data Filters

Stratify Data

Menu: Data > Stratify

Stratification is used to separate a file into non-overlapping groups of equal value. If groupings should or might contain overlapping members then use the Subset function.

There are 5 basic type of strata. The default is "null" or "no strata". If a file has strata and "no strata" is selected then all strata will be removed. This is the same as closing all the strata files.

The remaining strata methods are:

- **By Record:** Stratifies the data by record number. This is useful to look at sections of data that was previously sorted on a variable.
- **By Variable:** Stratifies the data on a variable of your choice. If the variable is a date or time variable, it is better to use the Date or Time strata methods.
- **By Date/Time:** Stratifies the data by date or time. The exact degree of strata width can be selected here as either by day, week, month, or year. Use the "Increment By" value to select the number of days, weeks, months or years in each strata. A date or time variable must be defined to use the date or time strata features. Use the Redefine Variables button to assign a field as date or time if one was not already assigned.

The increment is used determine the bin width of the strata. If no increment is desired, then strata are created so that each unique value in the selected field is a unique strata.

Each strata can be started at any initial value in the file. The unique field values are shown and displayed in a drop down box. If more than one file is selected then the initial values box will display only those field values contained in all the selected files. If no value is selected then the field is sorted and the strata is begun at the first value in the field.

Subset Data

Menu: Data > Subset

Subsets on data are used to define possible overlapping subsets of data. If the subsets are to have unique members, then use the Stratify function instead.

To use the subsets functions on a file, the file must either be a database file, or have a database file associated with it (such as ESRI® shape files). If the file is a text file or other type of shape list (such as MapInfo, or a DXF file), then save the shape as a database or shape file format and reopen the file.

Data subsets are actually a group of filters applied to the data. Subsets of a file are a list of related filters that partitions the data as desired. Subsets can contain the same shapes in different result sets. Therefore, new shapes are created and stored for each subset file result. This can consume a lot of memory if filters are poorly written.
New subset filters are added by the "New" button, and each subset filter is accessed by the tabs at the bottom of the window displaying the current filter. To save or import a filter right click on the filter display memo.

You can use Filters on any GIS Layer to show only a subset of that layer’s data. To access the Filters Window, select the Filters toolbar button or the Filters option from the popup menu accessible by right clicking on the current map or map legend (image below).

Filter data is a method of limiting the records that are displayed and used. A filter is like a query, but differs in complexity and how the data is retrieved from the database file. Filters, therefore, are typically limited to simple comparisons. Filters are applied to a single file. To create new subsets of data use the Subset function.

Biotas provides a very simple and easy to use filter builder. Each file may only have one filter list in use at any one time. Filters are built by first selecting a file. Then a field variable is chosen on which to create a comparison. A comparison operator is then selected for this variable.

<table>
<thead>
<tr>
<th>Available comparison operators are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>= equal to</td>
</tr>
<tr>
<td><> not equal to</td>
</tr>
<tr>
<td>> greater than</td>
</tr>
<tr>
<td>< less than</td>
</tr>
<tr>
<td>>= greater than or equal to</td>
</tr>
<tr>
<td><= less than or equal to</td>
</tr>
</tbody>
</table>

Once a comparison operator is chosen, then a value from the chosen variable is selected. Biotas lists all available values from the chosen variable field so a valid filter may be constructed. Clicking on the 'Add' button adds the filter to the filter list.

Complex, multi-comparison and multi-variable filters may be constructed by then selecting either the 'AND' or 'OR' button. Then a second filter may be constructed that will further limit the data to be used. The 'Undo Last' will progressively remove the added filters from the displayed list.

The filter will not be stored or used unless the 'Apply Filter' button is clicked. To turn off the filter for a file (i.e. display and use all of the data) without clearing it, deselect the 'filter on' check box.

Subset and Filter Examples

A typical filter is built by defining a relationship between a field and a value in that field, such as:

Country="USA"

Additional operators may be included to further define the filter:

Country="USA" OR Country="UK"

Blank records do not appear unless explicitly included in the filter. For example:

Country="USA" OR Country IS NULL
Complex filters can use braces "()" to order which parts of the filter are performed first. Filter elements within braces are performed first, then this result set is compared to the rest of the filter outside the braces.

Country="USA" AND (State="California" OR State="New York")

Linking Files

Menu: Data > Link

Disk based files can be linked by using a single parent to child link (called a one-to-one link) using the link form. This one-to-one linking method will work with dBASE, text and Excel files.

The link form is used as follows:

1. The parent database is either selected from a disk source or provided by default by the software.
2. Either browse or type in the full path and name of the file you will link the parent file to (Note: Microsoft Access tables can only be linked by using the Visual SQL Generator).
3. Once the parent and child tables are selected, click on one field form each table to act as the linking field. The fields do not have to have the same name but it is less confusing if you name the linking fields the same in each table.
4. Click on the Link button to create the link between the tables.
Data Analysis

Descriptive Statistics

The software comes with a small set of univariate statistical functions.

The available files that are currently opened will be displayed in the file list box. Selecting any file will bring up a list of the fields in that file. Check on any fields that should be analysed with the descriptive statistics listed next to the file list box. To process the selected fields in the files check the box next to the file name and select the statistics you want to analyse. You must identify the fields to analyse uniquely in each file.

Right click on the output sheet for options for saving or copying the output results.

Only numeric fields can be analysed with descriptive statistics. Empty field values will be ignored.

Spatial Association

Menu: Analysis > Spatial Association

Spatial Association is a grid based test that compares the presence and absence of different point patterns in each grid quadrat. There are two basic methods included in Biotas: pair wise and multivariate comparisons.

The pair wise tests are most useful for comparisons if there was a significant multivariate test result. The pair wise test can also be used on their own, but caution should be paid to the fact that with many pairwise tests there is an increased chance of either a negative or positive association being "detected" by chance alone (a statistical Type I error).

Pairwise results are based on a Chi-squared test between all possible pairs of point patterns selected for comparisons. Yates correction factor is calculated to account for bias resulting from cases of low cell frequencies. Three association indices are also calculated, the Ochiai, Dice, and Jaccard indices. Each index has a range from 0 (no association) to 1 (maximum association). See Jabson and Vegelius (1981) or Ludwid and Reynolds (1988) for more information on these and other association indices.

The multivariate test used in Biotas is the one described by Schulter (1984). Schulter's test can sometimes not detect an association even if one is present (a statistical Type II error) if negative associations and positive associations cancel each other out.

The covariation option compares quadrat densities rather than simple presence and absence. The covariation option is under development and not yet available.

Density Binning

Menu: Analysis > Density Binning

Density binning is useful for visually summarizing density data over an area. It is a grid based spatial quantizer that converts point pattern into two dimensional density bins. The number of points that fall within each quadrat are summed and the quadrat color is adjusted to visually indicate the quadrat's point density. The cell density is also entered into the shapes data record in the field "CellValue" which other tests can access for additional analysis.
Spatial Analysis

Point Pattern Analysis Basics

Point pattern analysis includes quadrat and distance analysis routines. The type of analysis you perform will depend on your data and analysis needs.

- **Point pattern analysis can be categorized as one of two basic types:**
 1. **Measures of dispersion** compare the location of points relative to a study area.
 2. **Measures of arrangement** compare the location of points relative to each other.

CSR: Complete Spatial Randomness

Complete spatial randomness (CSR) test are designed to ascertain if the point pattern being studied represents a random or non-random spatial process. It is often desirable to test if a point pattern is random before carrying out more complicated analysis.

Randomness of a spatial process may vary depending on the spatial scale being studied. That is, a point pattern may be random at a local scale, but non-random at a landscape or temporal scale. Varying the scale of the analysis can therefore provide much information about the dynamics of the point process both in regards to the landscape and with the point pattern itself.

Bitoas has several CSR tests. Of these tests, there are two basic types:

- **Two basic types of CSR tests:**
 1. **Quadrat** (e.g. spatial dispersion) based tests
 2. **Distance** (e.g. nearest neighbor) based comparisons

Quadrats can be either artificial, such as a regular grid or random quadrats placed over a study area, or they can represent natural boundaries already present in the landscape. An example of the later includes habitat analysis.

CSR - Contiguous Quadrats

Menu: Analysis > Complete Spatial Randomness > Spatial Dispersion > Contiguous Quadrats

This is a complete spatial randomness test using contiguous quadrats. Contiguous quadrats are constructed in a regular grid over the study site. The original placement of the grid can be adjusted as desired, as well as the grid cell size, grid cell type, and other features. See **Working With Grids** for more information.
Three contiguous quadrat tests options are available:

- Poisson, Chi-squared test
- Variance/Mean T-Test
- Negative Binomial test

The Poisson and Variance/Mean ratio test for a random Poisson distribution, while the Negative Binomial tests for a clumped distribution that follows a negative binomial distribution. Whatever model is selected, it is important to remember that even if an observed point pattern follows a specific theoretical distribution, one should be cautious in correlating what caused the resulting point patterns distribution (Ludwig and Reynolds 1988).

Because the Poisson test is a Chi-squared statistic, the bias of the test may be affected when quadrat frequencies for any cell count falls below 5. You can adjust minimum quadrat count used in the test by selecting the "Group Cell Frequencies Below" value and checking the check box to process this value. You can also elect to process the raw data and then manually post combine frequency counts less than 5.

To combine result frequencies:
1. Click and drag one frequency value over another in the results grid (see image below).
2. Then click on the recalculate button.

CSR - Scattered Quadrats

Menu: Analysis > Complete Spatial Randomness > Spatial Dispersion > Scattered Quadrats

This is a complete spatial randomness test using scattered quadrats.

Scattered quadrat analysis consists of placing circular quadrats, usually at random, over a defined study area and then testing if the density distribution of points that occur in these quadrats follows an expected Poisson distribution.

The scattered quadrat method suffers from the fact that if quadrats overlap, points can be included in more than one quadrat, making the assumption of independence invalid. This becomes more of a problem as the number or the size of the quadrats increases relative to the size of the study area. The use of contiguous quadrats removes this limitation (but does not remove other limitations of quadrat analysis).

To overcome this limitation, as well as to add additional test opportunities, scattered quadrats in Biotas can be constructed in non-random locations based on a point file of your choice. The scattered quadrat centers will be located on the points in this file you select. This also provides for direct analysis of point densities around specific known points (e.g. densities of disease or genetic abnormalities near a point source). Since selected point sources are not
random, you can use the permutation procedure to construct a significance level associated with the densities contained within the quadrats near your selected point centers.

Quadrat Variance

Menu: Analysis > Complete Spatial Randomness > Spatial Dispersion > Quadrat Variance

Quadrat variance tests are appropriate for conditions where the point pattern under investigation is continuous over a study area. One can then use either a belt transect divided into quadrats or a blocks. Transect quadrats or blocks can then be combined into various sizes to quantitize the distribution of the point pattern between differing quadrat sizes.

Biotas creates its own "belts" internally using a grid defined by the user. Each row of the grid is a "belt", and specific, random or all rows can be included in the analysis. All that is needed to analyse data using a quadrat method, therefore, is a data file with a point pattern.

<table>
<thead>
<tr>
<th>Biotas uses three quadrat variance techniques:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Paired Quadrat Variance (PQV)</td>
</tr>
<tr>
<td>Blocks of fixed size are paired at a given distance. Since block size is constant, only the distance affect the variance estimate. Variances are calculated for all possible pairs of quadrats at a given distance.</td>
</tr>
<tr>
<td>2. Two Term Local Quadrat Variance (TTLQV)</td>
</tr>
<tr>
<td>Blocks are increased sequentially in size by adding single quadrats to each block for each variance estimate calculated. Therefore, both distance and size are included in the variance estimate.</td>
</tr>
<tr>
<td>3. Randomly Paired Quadrat Variance (RPQV)</td>
</tr>
<tr>
<td>Variation of the PQV, but quadrat pairs are selected at random from all possible quadrat pairs at a given distance. Once quadrats are selected for a pair comparison at a given distance, they are not used again to estimate a variance at the current given distance or any other distance. Therefore, the RPQV method is the one of the three that maintains independence between variances and statistical probabilities can be computed.</td>
</tr>
</tbody>
</table>

Spatial Autocorrelation

Menu: Analysis > Complete Spatial Randomness > Spatial Dispersion > Spatial Autocorrelation

Quadrat based Complete Spatial Randomness may find that a point pattern is randomly distributed, but that may only tell part of what may be happening with the point pattern. The point pattern may be randomly distributed at a specified quadrat size, but that same point pattern may still exhibit spatial correlation between neighboring grid quadrats (Figure 1). Even if points are non-randomly distributed, a spatial correlation test can determine if there are any secondary spatial features associated with the data.
Figure 1. Different point patterns that produce the same quadrat frequency values. However, the spatial association between neighboring quadrats is still quite different at the specified quadrat size.

Biotas uses Moran's I statistic to test for spatial autocorrelation using a quadrat based analysis of either 4 (square) or six (hexagon) sided grid cells. If adjacent cells have similar point density values compared to non-adjacent cells, then spatial correlation would be said to exist at the tested quadrat size level.

There are three ways to compare adjacent grid cells if a square cell is used. These are in order from left to right in the below graphic, and borrowing from the vocabulary of chess: Queens Case, Bishops Case, and Rooks Case (Figure 2).

Figure 2. Adjacent quadrat types.

The Queens case has a biased diagonal value for square grid cells due to the fact that the grid cell centers of a square on the diagonal are not the same distance as cells in the horizontal and vertical direction. It is recommended to add a weighting factor to adjacent diagonal cells under this case, but you can elect to not add the diagonal weight to the Queens case by unchecking the "Weight Queen's Case Diagonals" box on the Modifiers tab.

Checking the "Compensate For Edge Effects" will only have an affect if you have defined a containment polygon file in the "Format Grid" window.

Selected files will be analysed separately unless the "Group Files (Single Grid)" on the Modifiers tab is checked.
Home Range

About Home Ranges

A home range can be simply defined as "the area used by an animal in the course of its activities". However, while such a simple definition seems elegant and attractive, it is difficult to quantify in practice. The choice of a method used to delineate what is a home range, or even a study site, boundary is too broad a topic to be covered here. You are instead encouraged to do a through review of the current literature on the subject.

The different home range methods are easy to apply and compare in Biotas. Home range estimators are not statistical tests, and it is completely valid, and recommended, to choose a method only after such comparisons. Contrary to popular myth, the more "modern" or complex analyses are not always the best description of land use. The final selection should, therefore, be based on your independent research and your study's unique parameters and objectives.

Data Area Curves

Menu: Analysis > Home Range

Data area curves are used to determine the change in the area of a home range contour as data is collected. Typically, the point at which the contour area is observed to not increase appreciable with additional data is the sample sized generally expected to determine an individual animals home range.

Results are plotted in the chart tab. Data area contours are mostly used for Minimum Convex Polygon home range estimators, but it has utility for any of the estimators provided with Biotas.

Plotting Data

Menu: Data

Plotting options for home range estimators are used to determine the types of graphical output desired for a calculation. Because graphics use vectors to plot home ranges, some home range methods require an additional estimate from a grid to plot a smooth contours. More grid cells means more fine details and often smoother contours, but increases calculation time.

Plotting options vary between estimators but include any of the following:

- **Confidence Interval**: The contour percent utilization. Must be integer values, separated by commas.
- **Extra Grid Padding**: Additional quadrats sometimes necessary to plot larger confidence intervals.
- **Grid Size**: Alternative method of determining the number of cells in a grid used for plotting.
- **Quadrat Edge Length**: The length along one grid cell side.
Confidence Intervals

The Ellipse, Harmonic Mean and Kernel estimators allow for plotting multiple contours at once. If multiple contours are desired, the contour percentages (without any % symbol) are entered and separated by a comma (e.g. 95,75,50). These values must be integers only.

For large contour percentages (85%-99%) with the Harmonic Mean and Kernel estimators, it is possible for the calculated contour extent to reach beyond the grid limits. If this occurs, the contour will not be plotted. Most contours should plot with a extra grid padding of 10% of the row grid count. Biotas does not automatically alter grid size or count to compensate for unplotted contours.

There may be various reasons why a contour failure may have occurred, and they should be investigated rather than just corrected for (maybe incorrectly) by software. Potential problems may exist in the data set itself, poorly chosen methods or parameters, software problems, etc.. And initial attempt to correct this problem is to moderately increase the number of extra grid cells used to perform grid calculations. Continue to other tests of the data if this continues to fail.

Overview of Home Range Methods

Biotas calculates the most common home range, or spatially explicit estimators for delineating data points.

Home range estimators in Biotas:
- Minimum Convex Polygon
- Frequency Ellipse
- Harmonic Mean
- Fixed and Adaptive Kernel
- Dirichlet Tessellations
- Circular Buffers

Select the "output log" option on the Modify tab to output area, perimeter, and polygon vertices. Polygon vertex output will include both "Total Area" and "Shape Area" values. Total area is the sum of all shape areas if there are multiple polygons in a result set (such as with Kernel and Harmonic Mean). If there is only one polygon, total area = shape area.

Each home range method has certain assumptions about the underlying data. These assumptions should be checked before using any specific Estimator. There are numerous papers and discussions on the merits of each estimator which should be exhaustively studied to select the proper estimator for any particular study.

Caution should also be noted, that the more recent estimators, such as the Adaptive Kernel, might provide visually intriguing estimates but may not include the most meaningful or accurate biological information. Home range estimators are a tool to investigate biological phenomenon, not an end in themselves.

Buffer Points

Menu: Analysis > Home Range > Create Buffer

Buffering creates a contour that includes all of the area within a specified distance from a point or line.
To create a buffer:
1. Select the files to be buffered.
2. Select the buffer radius and the buffer count. If buffer count is greater than 1, buffers radii will increment by your buffer radius. That is, if radius = 100 and buffer count = 3, then buffers of radius 100, 200 and 300 will be created.
3. Select your color options. You can select to have the buffer filled, or not. If the buffer count is greater than 1, you can also create a gradation of colors between buffers by selecting from the start color and end color option buttons.

Buffering can take a long time with large data sets. Buffering is slower with smaller buffer radii.

Minimum Convex Polygon

Menu: Analysis > Home Range

The Minimum Convex Polygon (MCP) is the "classical" method of home range estimation. The MCP is a non-statistical method in regards that it has no assumptions about the distribution of the data. However, the full 100% MCP estimator is sample size sensitive. Sample size effects can be investigated by calculating data area curves.

BIOTAS provides the following MCP methods when using less than 100% of the data points.

- Stationary Arithmetic Mean
- Stationary Arithmetic Median
- Stationary Harmonic Mean
- Stationary Harmonic Mean Areal Moment
- Moving Arithmetic Mean
- Moving Arithmetic Median
- Moving Harmonic Mean
- Moving Harmonic Mean Areal Moment
- Cluster Grouping

Most methods, except for cluster grouping, will usually give similar results for most data percentages >75%.

Confidence Ellipse

Menu: Analysis > Home Range

Frequency ellipses are a parametric statistical technique of estimating home range based on the assumption that the data is bivariate normally distributed. If data is distributed in this fashion, then the frequency ellipse is a good technique to use for home range estimation. If multiple contours are desired, the contour percentages (without any % symbol) are entered and separated by a comma (e.g. 95,75,50).
Biotas has three different distributions used to determine the confidence ellipse:

- Chi Squared
- Adjusted Chi Squared
- F Distribution

The F distribution should be used if one desires a probability ellipse that the next point sampled will fall within a specific area. Descriptive home range ellipses should use the Adjusted Chi-Squared.

Harmonic Mean

Menu: Analysis > Home Range

The harmonic mean calculates home range contours by using the reciprocal deviations (i.e. linear distances) from grid points to data points. Interpolation of these values along a grid creates a smooth contour that can be plotted and used to demarcate a home range. However, the Harmonic Mean contour is grid size dependent. This means that the same data will give different results and areas depending on the grid size selected.

The nature of the grid size harmonic mean area output is well documented and can be easily verified yourself by using different grid settings. However, how this affects biological interpretation of home range and land use is far from clear. Since the definition of a home range is far from perfect itself, having a method that produces varying results for the same contour percentage may be of considerable value.

Harmonic mean contours in Biotas can include data of most any integer percentage above 10%.

Kernel

Menu: Analysis > Home Range

The kernel estimator includes both the fixed and adaptive kernel. There is a wealth of literature on kernel density estimation and an examination of this literature is recommended.

The window width parameter (simply, how "wide" is the kernel at any point) for either the fixed or adaptive kernel may be estimated by three methods:

- User defined
- Special Functions (ad hoc)
- Least Squares Cross Validation (LSCV)

The user is expected to be familiar with these three methods as a detailed description for them is beyond the scope of this publication. For reference to information about these parameters estimation methods the user is directed to Silverman, 1990.

The adaptive kernel comes with an additional sensitivity parameter accessible by clicking on the ">>" button. See appropriate kernel literature for what value to use (such as Silverman,). The default is 0.5.

Contours can include data of most any integer percentage above 10%. If the data points are not continuous, the Least Squares Cross Validation may fail. In this case, add a random displacement to the data by checking the "Random" check box and entering a range for the random displacement.
Voronoi Polygons

Menu: Analysis > Home Range

Voronoi polygons are a spatially exhaustive description of a point pattern. Each "tile" in a Voronoi polygon represents the unique space around each point in the point pattern that is nearer to that point than to any other point. This polygon technique therefore is the only technique that assigns an area of use for each point as well as for all points in the point pattern (Wray et.al. 1992). This point specific area can provide additional information for habitat, or landscape use analysis. However, in any addition analysis, it should be noted that area assigned to each point is correlated to the area of its neighbors (Pielou 1969).

Biotas also provides for the calculation of the Delaunay Triangulation of points in the point pattern. The calculation of the Voronoi polygons and Delaunay Triangulations are often related and directly tied (one must be done to create the other) in many other software programs, but Biotas uses separate computational methods to arrive at each pattern. Despite this computational difference used by Biotas, there is a simple mathematical relationship between the two polygon techniques: the Voronoi Polygons can be constructed from the midpoint perpendicular bisectors of the Delaunay Triangulations between points. Delaunay Triangulations have very different geometric features than the Voronoi polygons, and are only included here for geometric comparisons.

As pointed out by Wray et.al., the Voronoi polygon technique requires a boundary area to limit the most outwardly tiles in the pattern. This is done in Biotas with the "Frame Relative Size ±" value. The boundary limit is a ± percentage of the data range.

To make us of Voronoi polygons, the tiles that include an edge on the boundary area are often deleted. The boundary tiles and their area are based on an arbitrary boundary size and are therefore themselves of arbitrary area. The size of the boundary is only of minor significance when electing to exclude boundary tiles, since few tiles will close at larger boundary sizes. Therefore, the boundary size can be adjusted to any amount desired.

You can further limit the tiles used in the final output by either checking the "No Edge Tiles" check box, or assigning a data percent use value less than 100%. The later method provides a means of creating the equivalent of Voronoi polygon contours. Note that if you assign both a percent use value less than 100% and check the "No Edge Tiles" box, then the data percent will be removed first, then the edge tile, with the result that the total removed will may not directly relate to the requested percent to remove.

If you are not interested in the separate tile areas, you can check on the "Outline Only" check box. This will create a single contour from all adjacent quadrats similar to other home range methods.

1. First described by Dirichlet in 1850, and later rediscovered by others, this geometric pattern is more properly referred to as Dirichlet Domains after the original founder. But due to its repeated rediscovery, this pattern has many synonymous names including, among the most commonly being used, Voronoi Polygons or Thiessen Polygons. One name or another will be more in common usage depending on your field of work. Although the nomenclature choice to use Voronoi rather than Dirichlet is technically incorrect, Voronoi is the name used for these domains in Biotas only to greater clarify the distinction from Delauny Triangulations.
Habitat Use

Habitat use is the examination of how a point pattern utilizes polygon features which represent different habitats, or land use characteristics on a local or landscape level.

Habitat use tests can be categorized as a special measure of dispersion test where the quadrats used for the comparison are defined as the habitat polygons in a coverage file rather than by a grid.

There are three recognized habitat analysis designs Type I, Type II and Type III. These vary in their assumptions and appropriate habitat use calculation methods.

Habitat Analysis - Type I Design

Criteria for a Type I habitat analysis include:
- Individual animals are not recognized. This means measurements are recorded or analysed on the population level
- Usage and availability is measured as a single collection of values for the entire study area. Individual areas of use are not considered
- If there is only one observation per individual, the design becomes a Type I design

A Type I design is the easiest to implement as measurements of use can range from direct counts, usage counts of auxiliary index variables in habitat types (droppings, footprints, etc.), aerial surveys, locational methods (GPS, radio telemetry, etc.), and so on. Neu's is an example of a habitat analysis test for a Type I design.

Habitat Analysis - Type II Design

Criteria for a Type II habitat analysis include:
- Individuals are recognised and used.
- Usage is measured at a level of used by each individual (such as use in a home range).
- Availability is measured either as a single collection of values for the entire study area or within individual areas of use (e.g. a home range).
- If there is only one observation per individual, the design becomes a Type I design.

A Type II design is mostly used with trapping, radio tracking or other data that records habitat use of individual animals. Johnson's and Quade's tests are examples of habitat analysis tests for a Type II design.
Habitat Analysis - Type III Design

Criteria for a Type III habitat analysis include:
- Individuals are recognized and used.
- Habitat use between individuals must be delineated by the data.
- Allows for simultaneous analysis of individual and population level analysis.

A Type III design is mostly used with trapping, radio tracking or other data that records habitat use of individual animals. Compositional analysis is an example of a habitat analysis test for a Type III design.

Compositional Analysis

Menu: Analysis > Habitat Use > Compositional Analysis

Compositional analysis is applied here as a multivariate technique for habitat use analysis, and terminology herein is relevant to this field.

For other habitat use methods see or Johnson's methods of habitat use analysis.

Compositional Analysis - Data Format Options

In Biotas, compositional analysis comparisons can take three forms:

1. **Locations to Home Range**
 - One or more animal locations file (must be a point file) are compared to local available habitat files (must be polygon coverages).

2. **Home Ranges to Study Site**
 - One or more local habitat files (must be a polygon coverage) are compared to a single regional study site coverage (must be a polygon coverage).

3. **Locations to Study Site**
 - One or more animal locations files (must be a point file) are compared to a single regional study site coverage (must be a polygon coverage).

Compositional Analysis - Home Range Level

Home range level analysis consists of comparing data point habitat occurrences to the available habitats within a home range boundary. If you want to compare data point occurrence, or home range composition, to the available habitats in a study site, see the study site level analysis. The study site option is not used in this analysis level, and will be grayed out.
1. Open the compositional analysis window.
2. Select the comparison method: "Locations to Home Range".
3. Check the files to be use in the analysis.
4. From the drop down list box select the home range file (must be a polygon coverage) each point file is associated with.
5. From the drop down list box select the data field that identifies the habitat types in the selected home range file. The habitat types within the home range should be calculated before using compositional analysis with the shape overlap function.
6. Click on the calculate button

Once the calculations are complete, a results window will be displayed.

Compositional Analysis - Study Site Level

Study site level analysis consists of either comparing data point habitat occurrences to the available habitats within a study site, or comparing the habitats in a home range boundary to the habitat composition in a study site. If you want to compare data point habitat occurrences to a home range, see the home range level analysis.

1. Open the compositional analysis window.
2. Select the comparison method: 1) "Home Ranges to Study Site" or 2) "Locations to Study Site".
3. Check either the 1) home range or 2) location files to be use in the analysis.
4. If you are performing a "Home Ranges to Study Site" analysis, from the drop down list box select the data field that identifies the habitat types in the selected home range file. The habitat types within the home range should be calculated before using compositional analysis with the shape overlap function.
5. Select the study site file.
6. From the drop down list box select the data field that identifies the habitat types in the selected study site file.
7. Click on the calculate button

Once the calculations are complete, a results window will be displayed.

Neu's Method

Menu: Analysis > Habitat Use > Neu's Method

Neu's method is a Type I habitat analysis method.

Biotas only currently calculates Neu's method from point data files. Locations of animals or other events related to habitat use must be in a point file format. The habitat layers must be in a polygon GIS format. Biotas will determine for each point the habitat polygon it is in and calculate the frequencies of habitat use in each habitat type.
To test data files for habitat selection using Neu's method do the following:

1. Open your data point files and your habitat file. Only one habitat file can be processed at a time.
2. Open the Neu habitat calculation window.
3. Select the point file(s) to process.
4. Select the habitat file to process.
5. Select the field in the habitat file that describes the habitat each polygon represents. This field will be used to group polygons into habitat types.

Steps 1-5 must be performed to enable the calculate button. Once enabled, click on the calculate button.

After calculations are complete, a habitat use window will be displayed showing habitat use proportions, confidence intervals for habitat use, and results of a Chi-squared test.

Neu's Result Fields

Menu: Analysis > Habitat Use > Neu's Method

The habitat proportions window displayed after completion of a Neu's habitat analysis has six fields of data results displayed. These are reviewed here.

Neu test results fields include:

- **Habitat**
 - The habitat types defined in the selected habitat file, grouped using the selected habitat field.

- **Observed Count**
 - The number of data locations that were found in each of the the unique habitat types.

- **Habitat Proportion**
 - The proportion of each habitat type in the selected habitat file.

- **Expected Use**
 - The number of observations expected to be observed in each habitat type.

- **Selection Ratio**
 - The ratio of observed / expected counts.

- **Standardized (Selection) Ratio**
 - A standardization of the selection ratio. This allows for comparisons between studies. The standardized selection ratio sums to 1 and can be used as a relative index of use between habitat types. If, for example, the standardized selection ratio is 0.25 for one habitat and 0.75 for another, it can be said there is a 3 fold difference in selection between the two habitat types.

Neu's Habitat Proportions

Menu: Analysis > Habitat Use > Neu's Method

The habitat proportions window is displayed after completion of a Neu's habitat analysis. The window is broken into 2 tabs (Figure 1).
Figure 1. Neu’s results window tabs.

The first tab contains the numeric results of the analysis. The top of the first tabs panel has a table showing the proportions of observed and expected use for each habitat. The table has several columns that relate to data proportions and interpretation. Biotas calculates a Chi-squared statistic testing the null hypothesis (Ho) that observed use does not differ from expected use. The bottom half of the first tab has a text window displaying this Chi-squared test results. By varying the available data (see below) multiple Chi-squared tests can be displayed in this text window.

The second tab contains a graphic showing the confidence interval bars for observed use in each habitat and the calculated expected use values (shown as red squares). Expected values that fall outside of the observed use confidence bars indicate departure which habitats have observed use that differs from expected use if the Chi-squared test result rejected the null hypothesis.

Further analysis can be performed depending on the nature of the data. The following provides some examples:

If one or more habitats should not be included in the analysis, uncheck the check box for each habitat(s) and click on the recalculate button. This will remove the habitat from consideration for both the Chi-squared test and the confidence intervals.

If one or more habitats have expected values less than 5, the Chi-squared test can be biased. To remove this bias either do as in (1) above, or click on one habitat and drag it into another habitat to combine habitats until all expected values in each habitat is greater than 5 (Figure 2). Click on the recalculate button to re-test the new proportions.

Figure 2. Drag and drop to combine habitat proportions.
Movement Analysis

Movements

Menu: Analysis > Movements

Movement analysis finds the distances, angular change in direction, and velocities between locations for a total of \(N - 1 \) points (\(N = \) the total number of points in the data file).

The movement data summaries then can be used to test if the observed movement had a directional component using one of three statistical tests. These include two circular statistics, Rayleigh's test and Rao's spacing test, and one linear statistic computed as a Runs test.

Circular Statistics: The raw angular change in direction movement data is non-linear data since it represents directional degree values on a range from 0 to 360. The Rayleigh's and Rao's test are both circular statistic tests that account for this nonlinear data format. The Rayleigh's test is more well known since it's probability values are more easy to find published or estimated with a Chi-squared value. However, recent improved estimates for the Rao probability values has made this test more accessible for computer calculations.

While Rayleigh's and Rao test are both circular statistics, they examine very different components of the data. This difference should be known so you can more accurately select the appropriate test for your data.

Rayleigh's test is used to examine the significance of the mean direction in the movement data. The Rao test, in contrast, is based on the assumption that if the data is uniform, then successive observations should be evenly spaced around the 360 degree arc. Departure from this even distribution indicates clumping of the data for the Rao test. Clearly, the Rao test is less powerful than the Rayleigh's test if the data had a mean direction. However, the Rao test is more powerful than the Rayleigh's test if the data has no single directional mean component, but still has patches of local clumping. The Rao test is then more appropriate if significantly different mean direction of movements occur over time.

Biotas uses a Chi-squared approximation test for the Rayleigh probability value which gives very accurate results for sample sizes greater than 30. With sample sizes less than 30 the Chi-squared approximation will give good estimated probability values.

Biotas probability estimate for the Rao test are accurate within a sample size range up to 1000. For more reading on circular statistics, it is recommended to review an appropriate book on the subject.

Linear Statistics: While the raw movement data is a circular variable, the change in direction between movements can be reduced to a binomial variant if only the change in direction is considered as "left turn" versus "right turn". A Runs Test of randomness for the change in direction moved may then be calculated. Movement analysis also provides for a moving average calculation, in case it is determined the binomial variant has a periodicity, for any user defined length (M), for movement values. The Runs test is most powerful when considering movements within a confined area, such as a home range, or body of water (lake, estuary, etc.). This is most useful for ascertaining circular movement paths that occur around the periphery of such a containing space over time.

Moving average values are provided for all inter-location values, but only represent the requested average length when \(M > t < N - M \), for \(t = 1 \) to \(N \). To use movement analysis for velocities, a Date or Time variable must be set for the file. Use the "redefine variable option" on the Modifiers tab to add or change a date or time variable associated with a file.
Regression and Correlation

Regression

Menu: Analysis > Regression

Biotas performs both simple regression and polynomial regression on one independent variable and one dependent variable. The independent and dependent variables are assigned by clicking on the "Variable" button and clicking on one data field in each list that corresponds to the independent variable or dependent variable list. This variable assignment must be done separately for each file being processed.

Linear regression is a well covered topic in many statistic books, so it will not be covered in depth here. You are suggested to review this topic for limitations and expectations of linear regression.

Biotas performs only a univariate linear least squares regression on one dependent variable. The output shows the linear regression equation, slope, and correlation coefficient (R) values for the regression. Two statistical tests are also included: the significance of the slope (F Test) and if the intercept differs from zero (T-Test).

The correlation coefficient R ranges from -1 to 1. A value near -1 means a strong negative linear association, while a value near +1 means a strong positive linear relationship. A value near 0 means no linear relationship exists. In contrast, the coefficient of determination R^2 (i.e. R Squared) equals the proportion of variability in the dependent variable explained by the linear relationship.

Polynomial regression creates a best fitting XN polynomial equation that is the best fitting curve through the bivariate data. The polynomial equation takes the format of:

\[f(x) = C + X - X^2 + X^3 - X^4... X^N ...etc. \]

The degree N (i.e. how many X factors raised to a power N) of the polynomial function is determined the numeric spin button window next to the polynomial regression option. "C" is a constant value. Unlike the linear regression test, there is no statistic fixed to the non-linear regression and is a purely descriptive function. The "Scale Values To Minimum" option will rescale the equation and the output chart so that the minimum value = the data sets minimum value, else zero will be assumed to represent the minimum.

Temporal Autocorrelation

Temporal autocorrelation in Biotas uses the time series autocorrelation function (ACF) to test the univariate temporal correlation of variables. The ACF tests the randomness of residuals with respect to the following function:

\[Y_t = E_t + C * E_{t-1} + R \]

The function depicts a value "Y" at time "t" equal to the expected value "E" at time "t" plus the expected value at "t - 1" multiplied by a fixed constant "C" plus a random amount of white noise "R". Therefore, the events at time t and t + 1 will be correlated to a degree depending on the magnitude and sign of C.

If the series under consideration only consists of white noise then the series is purely random and no time series effect exists. To test for this, on can examine the expected number of "up" and "down" turns in the series as a
Runs Test. In large sample size from a purely random series the number of "up" or "down" turns in the series should fall within the range $\frac{2n}{3} \pm 1.96\left(\frac{8n}{45}\right)^{\frac{1}{2}}$. Anything outside this range would indicate a non-random series component.
Sampling

Random Sampling

Menu: Analysis > Random Sample

You can randomly sub-sample your data in Biotas using both a random sample and a random sample method. With either a simple or stratified random sample you can elect to sample either a specific number of items or a percentage of total items in the file. You may also randomly sample with or without replacement. Sampling with replacement has better defined statistical properties, but if your sample size is small you may repeated sample the same item so you will not have a total number of unique sampled items. The reasons for randomly sampling data will dictate which method you select.

Simple Random Sampling: This sampling method randomly samples items regardless of any specific spatial or data features assigned to each item. This is the simplest type of sampling method. If your data represents a homogeneous population the simple random sampling is the best choice since it will minimize the sampling variance and error. However, if items in your data have well defined strata that can affect the representation items in your sample with respect to that strata, then you should consider performing a stratified random sample.

Stratified Random Sampling: This sampling method is intended to be used when data has well defined strata. That is, if you use a simple random sample on data that has well defined strata, then sampled items from some rare strata may be under represented in the total sample.

For example, let's assume you have a point file that represents trees on a landscape. Tree distribution may be related to soil types and you want to sample an equal number of trees from each soil type. You have already used a soil GIS layer in Biotas () to determine what soil type is associated with each tree and placed this soil type information in a new field called "soil type" into your tree file. Since you wish to sample trees so that an equal number of trees are present in the sample from each soil type, you would select the field "soil type" in your tree file as the stratification field, and assign an equal percentage to each value in this field.
CAD (Computer Aided Design) functions are methods to change the location and shape of objects on the canvas. All shapes visible (Points, Lines, and Polygons) may be moved or altered.

Add Shape

Menu: Canvas > Add Shape

Section not completed.

Adjust Lines

Lines and polygons consist of one or more line segments. Each line segment begins and starts at a node point. A line or polygon shape can be altered by changing the location of any of its nodes. The shape’s color or shape styles can also be changed.

<table>
<thead>
<tr>
<th>To move a node of a line:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Select the Pick Tool from the toolbar.</td>
</tr>
<tr>
<td>2. Place the cursor over the line that is to be altered and click on the line. The line should be highlighted and the nodes are made visible.</td>
</tr>
<tr>
<td>3. To move a node, place the cursor over the node. If the cursor is positioned correctly over a point shape, the cursor will change and a “+” sign will appear near the cursor indicating that the move cursor is active for that point.</td>
</tr>
<tr>
<td>4. At this point press and hold down the left mouse button over the node. Then while holding the mouse button down, move the mouse and node point to the new location.</td>
</tr>
<tr>
<td>5. Releasing the mouse button will put the node point in its new location.</td>
</tr>
</tbody>
</table>

Adjust Points

Point shapes can only be altered by moving their location, or changing their color or shape styles.

<table>
<thead>
<tr>
<th>To move a point shape:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Select the Pick Tool from the toolbar.</td>
</tr>
<tr>
<td>2. Place the cursor over the point to move. If the cursor is positioned correctly over a point shape, the cursor will change and a “+” sign will appear near the cursor indicating that the move cursor is active for that point.</td>
</tr>
<tr>
<td>3. Press and hold down the left mouse button</td>
</tr>
<tr>
<td>4. While holding the mouse button down, move the mouse and point to the new location.</td>
</tr>
<tr>
<td>5. Releasing the mouse button will put the point in its new location. If the point shape is associated with a data file, the corresponding spreadsheet data values for the location will also be updated.</td>
</tr>
</tbody>
</table>
Adjust Polygons

Lines and polygons consist of one or more line segments. Each line segment begins and starts at a node point. A line or polygon shape can be altered by changing the location of any of its nodes. The shape's colors and line styles can also be changed.

To move a node of a polygon:

1. Select the Pick Tool from the toolbar.
2. Place the cursor over the polygon that is to be altered and left click inside the polygon. The polygon should be highlighted and the nodes are made visible.
3. To move a node, place the cursor over the node. If the cursor is positioned correctly over a point shape, the cursor will change and a "+" sign will appear near the cursor indicating that the move cursor is active for that point.
4. At this point press and hold down the left mouse button over the node.
5. While holding the mouse button down, move the mouse and node point to the new location.
6. Releasing the mouse button will put the node point in its new location.

If you press and hold down the left mouse button while the pointer is within the polygon, you can drag the entire shape to another location on the canvas.

Click outside the polygon to deselect it

Altering Shapes

Menu: Canvas > Edit Shape

Points, lines and polygons may be changed by using the CAD Pick Tool to alter shapes.

Before a shape can be adjusted it must be selected.

To select a shape and alter it:

1. First select the CAD Pick tool from the toolbar.
2. The Canvas cursor should change to correspond to the toolbar icon.
3. Click on the shape to be adjusted. You must click inside a polygon to select it.
4. Points and lines must be clicked near to be selected. You do not have to select the shape on the Legend. The shape you want will be inferred by the program.
5. If the shape cannot be selected, right click on the item in the legend and select "Order > Bring To Front" from the popup window.
You can create **Charts** using any GIS Layer as a data source. Access the Charts Window, select the Charts Toolbar Button or the Charts option from the popup menu accessible by right clicking on the current map or map legend.

The charts window has to panels that display the list of files you can chart and the fields for each file. When you select a file to chart, a list of that files fields are displayed for you to select from to chart. Charts only function for numeric fields (decimal, integer) or date fields. If a field is listed as "Text" but you know it contains only numeric data, then you can also chart this field.

To chart data in a file, you must first select (check on) the file you wish to chart from, then select (check on) the fields in that file you wish to chart (Figure 1).

If a file is not checked on, no selected fields will be charted. The chart that is created for all selected files will correspond to the chart type button depressed (Figure 2).

Charts features can be edited by using appropriate the chart editors. Each editor is available either by right clicking on the chart and selecting from the popup list, or by double clicking on the chart item for selected chart features (i.e. axis, legend or data).

The chart data editor (Figure 3) allows you to make changes to the currently selected data set. You can change the data's color in the chart, the type of chart used to display the data, as well as the data itself. The Series Order is the front to back order of the data relative to other data in the chart. You can also show label flags for each data item in the chart by selecting the checking the Show Flags check box.
Figure 3. Chart data editor window is used to edit data display properties.

The chart axis editor (not shown) allows you to set features for the horizontal or vertical axis. You can set the axis caption, increment, format, etc.
Geographical Information (GIS)

Identify Data

Menu: Canvas > Identify Shape

Select the Identify Data toolbar button. Left click on any point shape in the canvas. The data associated with this point will be displayed.

Plotting Data

Menu: Data

Plotting options for home range estimators are used to determine the types of graphical output desired for a calculation. Because graphics use vectors to plot home ranges, some home range methods require an additional estimate from a grid to plot a smooth contours. More grid cells means more fine details and often smoother contours, but increases calculation time.

- **Possible estimator plotting options can include:**
 - **Confidence Interval** The contour percent utilization. Must be integer values, separated by commas.
 - **Quadrat Edge Length** The length along one grid cell side.
 - **Extra Grid Padding** Additional quadrats sometimes necessary to plot larger confidence intervals.
 - **Grid Size** Alternative method of determining the number of cells in a grid used for plotting

Zooming

Menu: Canvas > Zoom In / Out

Zooming allows for enlarging parts of the graphic canvas to see finer detail in an area. To zoom an area, select the zoom tool. Click on the graphic canvas and while depressing the left mouse button, drag the mouse to create a boundary definition. The canvas will enlarge the visible area to this defined boundary. Zooming does not function with just a mouse click like some other programs. To zoom out, either click the zoom out button or right click the graphic canvas and select zoom out. Zooming out will return to the last zoom view. To return the normal view, click the default view toolbar button.

Finding Distances

Menu: Canvas > Distance

To find linear distances for objects on the canvas, select the distance tool. Dragging the mouse over the canvas between two points, after left clicking, will give the linear distance. The distance is displayed in the lower right corner of the main window.
Grab and Move

Menu: Canvas > Grab and Move

The grab and move tool allows for the canvas position to be slightly adjusted after a zoom operation. By left clicking with the mouse and holding the mouse keep down, the current view of the graphic can be shifted in any direction.

Spatial Analysis

Create Buffers

Menu: Overlays > Create Buffer

Buffering creates a contour that includes all of the area within a specified distance from a point or line.

To create a buffer:
1. Select the files to be buffered.
2. Select the buffer radius and the buffer count. If buffer count is greater than 1, buffers radii will increment by your buffer radius. That is, if radius = 100 and buffer count = 3, then buffers of radius 100, 200 and 300 will be created.
3. If the files you selected were polygons, you can elect to plot the exterior, interior or both exterior and interior buffer.

Output: if your selected files were lines or polygons, you can buffer either the lines or the vertices.

To buffer the lines, check the "Continuous Buffer for Lines and Polygons".

To buffer only the points, uncheck this option.

If the "continuous buffer" options is unchecked, you can select to merge vertex buffers that are closer than the selected buffer radius by checking the "Merge Buffers With Same Radii" box.

Colors: Select your color options. You can select to have the buffer filled, or not. If the buffer count is greater than 1, you can also create a gradation of colors between buffers by selecting from the start color and end color option buttons.

Buffering can take a long time with large data sets. Buffering is slower with smaller buffer radii.

Creating a Grid

Grids are used in many analyses in Biotas. Understanding how to create an appropriate grid is therefore important.

Grids are made up of quadrat. A quadrat is a convex polygon. Grid quadrats can be of three types: triangle (3 sides), square (4 sides), or a hexagon (6 sides). You may note that not all
analyses allow all three grid type options to be selected. Each quadrat type has limitations and benefits:

<table>
<thead>
<tr>
<th>Grid Types:</th>
</tr>
</thead>
</table>
| **Triangle:** The triangle grid is a degenerate form of the hexagon (constructed by splitting up hexagons into 6 equal parts). Its utility lies in the fact that it represents an exhaustive interconnecting lattice over an area which can easily be extended to represent a third dimensional value at each vertex.
| **Square:** The square is perhaps the easiest field shape to construct as a sampling unit. Its dimensions can range from sub-meter plots to hectares. It is also the grid shape used by software to plot home range isopleth contours.
| **Hexagon:** The hexagon's unique property over the triangle and the square is in that the center of each hexagon is equidistant to all its neighboring hexagon center points. This means that analysis with hexagons do not have to weight diagonal center distance as with the square. |

Grids are constructed as polygon shapes, not as line vectors. Therefore, they inherit all features of polygons including being able to have unique or, can be, or and can have their vertices edited or the entire polygon can be moved on the canvas with . The only drawback to this design is that it can take some time to construct a grid if the quadrat size is very small relative to the total area of the grid.

Create Buffers

Menu: Overlays > Create Buffer

Buffering creates a contour that includes all of the area within a specified distance from a point or line.

To create a buffer:
1. Select the files to be buffered.
2. Select the buffer radius and the buffer count. If buffer count is greater than 1, buffers radii will increment by your buffer radius. That is, if your radius = 100 and buffer count = 3, then buffers of radius 100, 200 and 300 will be created.
3. If the files you selected were polygons, you can elect to plot the exterior, interior or both exterior and interior buffer.

Output: if your selected files were lines or polygons, you can buffer either the lines or the vertices.

- To buffer the lines, check the "Continuous Buffer for Lines and Polygons".
 To buffer only the points, uncheck this option.
- If the "continuous buffer" options is unchecked, you can select to merge vertex buffers that are closer than the selected buffer radius by checking the "Merge Buffers With Same Radii" box.

Colors: Select your color options. You can select to have the buffer filled, or not. If the buffer count is greater than 1, you can also create a gradation of colors between buffers by selecting from the start color and end color option buttons.
Buffering can take a long time with large data sets. Buffering is slower with smaller buffer radii.

Merge Overlays

Menu: Overlays > Merge Overlays

Merging overlays is a method of combining any number of overlays into a single file. The files are only combined, they are not checked for intersections, overlapping shapes, or any other interaction between the files. Merging files is most useful for data sets and point shape files, but can be performed on lines and polygons shape lists. Only files of the same type (point, line, or polygon) can be merged into a single file.

To merge files, select the files to be merged by highlighting them in the "available" file box and double clicking with the mouse or use the ">" button to move them to the list of files to merge. The name of the merged file will be, by default, the first file selected. To change this type in a new "Merge Title" name.

Merging will remove any reference in the legend to the individual files that were merged and replaced with the new merged file title.

Merging is a local method. No changes to the files on disk will occur without specifically saving the merged file.

Shape Overlap

Menu: Overlays > Shape Overlap

Shape overlap takes a base shape list and determines where the overlapping shape list shapes interact with the base shape. The result will be a new shape file.

Shapes are selected as either a base or overlapping file by double clicking on the row in the displayed list of available shape lists. Shape attributes of generated shape lists may be changed and adjusted like any other file.

<table>
<thead>
<tr>
<th>There are five methods for overlapping shapes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection</td>
</tr>
<tr>
<td>Inclusive</td>
</tr>
<tr>
<td>Exclusive</td>
</tr>
<tr>
<td>Contained</td>
</tr>
<tr>
<td>Vertices Only</td>
</tr>
</tbody>
</table>

Only the Intersection method will return part of a shape. All other methods return the entire shape from the base shape list that matches the overlapping method. Intersection and Inclusive also do a "Contained" setting by default.
Point in Polygon

The point in polygon function checks all points in a data file against the selected polygon overlay file.

One field from the polygon file will be added to the point file field list as a reference to the polygon where a point is located. If a point is not in a polygon the value will be empty (or "null"). Select this referring field from the "Results Field Source" list box. The new field title in the point file can be defined by typing in any desired name in the "Results In Field" text box. If the point file is to be saved in dBASE format, then the field title should not exceed ten characters in length.
Projections

The earth is not a true sphere, but more elliptical in shape (the earth has a larger equatorial radius than a polar radius). The Earth's surface is not perfectly smooth (mountains and valleys abound), and an irregular geoid has been used to estimate the shape. However, for most conversions, this irregular shape is unnecessary. Instead, an approximation of the Earth's surface is created with an imaginary spheroid that has a smooth surface.

Although the spheroid is not an exact representation of the earth's surface, it is more accurate than using a spherical earth model. Although a spherical model is very useful when describing relative positions, and in simplifying calculations, the spheroidal model is used by Biotas by convention.

To convert location data one must select both a projection and a datum for both the data to be converted and the results. Projections are selected from the “projection conversion” group located on the lower left half of the main Biotas window. This group is also used to define projection parameters for the "to" and "from" projections.

You may convert to and from the following projections:
- Latitude and Longitude
- Universal Transverse Mercator (UTM)
- Albers (both one and two standard parallels)
- Lambert (both one and two standard parallels)
- Equatorial Mercator
- Stereographic

Any of the conversions may also be performed between different datums.

Each location is defined along a pair of coordinate axes. The notation used to describe each axis will vary depending on the type of location method employed. Latitude and Longitude will describe the vertical, or "Y" axis, as Latitude, or \(\phi \), and the horizontal, or "X" axis, as Longitude, or \(\lambda \). Other methods, for example, call the "Y" axis the "Northing", or \(N \), and the "X" axis the "Easting", or \(E \). Biotas only uses the "X" and "Y" notation as a universal description (i.e. mathematical) of the horizontal and vertical axis, respectively.

Datums

A datum is a defining set of parameters that describe the length of this imaginary spheroid's major and minor axis. Different datums represent different levels of know accuracy in defining the spheroid, or are intended for local accuracy. Older datums such as Clark 1866 are still used to define many maps of North America, such as US Geological Survey 7.5 minute topographical quadrangles.

You may select from over 100 global or local datums. The WGS 1984 spheroid is generic global estimate of the earth commonly used today.

To change a projection from one datum to another, select the same projection in the "to" and "from" lists and select different datums in the "Old Datum" and "New Datum" lists. The "Old Datum" is the datum used to describe the current data. The results will be converted into values descriptive of the "New Datum" parameters.

To change both projections and datums at once, select the appropriate projections and datums.
Shifts between datums are caused for many reasons. For example, the datum shift between the NAD27 and the NAD83 (~WGS84) is caused by a different location used for the datum origin and mass center of the earth.

Datum shifts are not automatically corrected. You must manually enter a fixed datum shift for a local area. The default coordinate datum shift, as both positive values, will move the projection to the north east by the number of meters you entered. If your shift is in another direction, use the below table to determine your correction. (X = Easting, Y=Northing)

<table>
<thead>
<tr>
<th>Direction</th>
<th>East</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>+X, +Y</td>
<td>+X, -Y</td>
</tr>
<tr>
<td>South</td>
<td>-X, +Y</td>
<td>-X, -Y</td>
</tr>
</tbody>
</table>

Equatorial Mercator

The Equatorial Mercator, like the Lambert and Polar Stereographic projections, is a conformal projection. These three projections, when used together, can map the entire earth, from the equator to the poles.

There are many variations of the Mercator projection. Only the Equatorial Mercator and the Universal Transverse Mercator projections are provided with this program. Distortion from the Equatorial Mercator projection is a function of latitude, not longitude and is most useful for areas with a wide East and West expanse at the equator. The Equatorial Mercator projection can also be calculated as a special case of the Lambert projection.

The central meridian, in longitude, is usually centered in the area of conversion, but may also come from a published value on the map for which you wish to match your conversions.

Lambert Conformal

The Lambert, like the Equatorial Mercator and Polar Stereographic projections, is a conformal projection. These three projections, when used together, can map the entire earth, from the equator to the poles.

The Lambert projection is most useful at the mid latitudes. Distortion from the Lambert projection is a function of latitude, not longitude and is most useful for areas with a wide East and West expanse. The Lambert projection will fail, computationally, at the poles and the equator, but a standard parallel set as little as 1 second from these extremes will produce similar results to either the Polar Stereographic and Equatorial Mercator projections.
The Lambert projection may be calculated as either a one or two case. Two standard parallels will produce less North and South distortion, but is quite satisfactory for local areas. Standard parallel 1 should be a Latitude that is less in magnitude (i.e. -33 is less than -20) than standard parallel 2. Negative standard parallels are allowed for the Southern Hemisphere. If you wish to use a single standard parallel, uncheck the "Use two parallels" check box. Standard parallel 1 will become the single standard parallel used.

The central meridian, in longitude, is usually centered in the area of conversion, but is up to the discretion of the user.

Use the False X and False Y origins to shift your values to a user defined origin, different from the equator (False Y = 0) or Greenwich Mean Longitude (False X = 0).

Latitude and longitude

Latitude and longitude represents the basic description of geographical location. Each of the different projections are mathematically derived from a latitude and longitude coordinate system. Although direct conversion algorithms exist for between projections conversions, most convert to and from the latitude and longitude system. The difficulty with the latitude and longitude system concerns the very nature of it being an angular measure. For instance, the distance between 20 and 30 degrees longitude is different depending on the latitude.
There is also no standard method of storing latitude and longitude location values, and storage is often dependent on user preference. Two common methods of latitude and longitude notation are the Decimal Degrees and Decimal Minutes storage types. Biotas also accepts latitude and longitude data as degrees, minutes and seconds notation; referred to here as Decimal Seconds. However, whatever notation used, latitude and longitude must be contained within one data field each. Separate fields for degrees, minutes and seconds are not supported. See Latitude and Longitude Data Storage for instructions on how to transform your data into the formats supported by Biotas.

Be sure your method of latitude and longitude storage matches the type selected in the latitude and longitude parameters window (accessed by clicking on the parameters button in the Projection Conversion group).

Biotas only accepts Latitude and Longitude values stored as either degrees or "decimal representation" of degrees. "Decimal representation" means data may be encoded to contain the actual minutes and seconds in the value or the minutes and seconds may be recorded as fractional representation of higher order values.

A Longitude of 120°40'45" (120 degrees, 40 minutes, 45 seconds) may be encoded in any of the following formats:

- **Decimal Degrees**: 120° 40' 45" becomes 120.6792°, and written as 120.6792.
- **Decimal Minutes**: 120° 40' 45" becomes 120° 40.75', and written as 120.4075.
- **Decimal Seconds**: 120° 40' 45" remains as it is, and written as 120.4045.

Decimal Seconds retains the most intuitive information for reading by the user, but it is only a "representation", not a true decimal value. In all cases, Biotas will internally convert all values to decimal degrees during calculations, but will not alter your data storage type. Having the original data in Decimal Degrees format will decrease the total number of calculations necessary for each conversion. With today’s high speed computers this is really of limited importance.

However your data is stored you must make sure Biotas correctly interprets the data by selecting the appropriate storage type accessed by clicking on the "Parameters" button when you select Latitude and Longitude as a conversion type.

If your method of storing Latitude and Longitude data differs from above then you must convert it before using Biotas. The easiest method of converting the values is in a spreadsheet program. If you do not already have your data in a spreadsheet file, one convenient method is to paste the contents of your file into a spreadsheet. Open your file containing your location data in a word processor, select the entire file’s text, copy the selected text, and paste it into a spreadsheet. Be sure your file has either tab or comma separated values. This process does not work for all spreadsheet programs. If this pasting method does not create separate columns of data in the spreadsheet corresponding to
separate fields in your data file you must import this file into the spreadsheet. See your spreadsheet program’s documentation on how to import text files with comma or tab separated values.

Once in a spreadsheet program, first name two new columns to hold the new decimal representation of your Latitude and Longitude.

If you store 120° 40.75’ (Decimal Minutes) as 12040.75, for instance, then merely create spreadsheet formulas that divide your values by 100.

If you have stored degrees, minutes and seconds in separate columns then do the following:

For data stored in degrees (e.g. column A = 120) and decimal minutes (e.g. column B = 40.75) the following formula will convert to Decimal Minutes for the first values in spreadsheet cells A1 and B1. A1 + B1/100. To convert to Decimal Degrees use A1+ B1/100.

For data stored in degrees (e.g. column A = 120) and minutes (e.g. column B = 40) and seconds (e.g. column C = 45) the following formula will convert to Decimal Seconds: A1+ B1/100 + C1/1000. To convert to Decimal Minutes use: A1+ B1/100 + C1/6000. To convert to Decimal Degrees use: A1+ B1/60 + C1/6000.

Stereographic projection

The Stereographic projection, like the Mercator and Lambert projections, is a conformal projection. These three projections, when used together, can map the entire earth, from the equator to the poles.

![Stereographic projection](image)

Only the Polar Stereographic projection is provided with this program for locations near the poles. The Equatorial Mercator may be used for locations near the equator. Alternately, the Lambert projection may be used for mid latitude values as well as near equatorial and near polar locations. The Stereographic projection can also be calculated as a special case of the Lambert projection.

Universal Transverse Mercator (UTM)

The UTM projection was developed by the U.S. Army as a means of improving mapping and artillery calculations. The bases for this projection is a 1000 meter square grid system laid out along zones that are, usually, defined to be six degrees apart at the equator (but see below). The geographical locations of the earth are projected onto this grid. Distortion is least at the mid point of a zone and increases as location coordinates near the zone edge. The UTM system has quickly become a common low to mid latitude projection, but while it can be extended to the poles, its accuracy tends to diminish significantly above 80 north or south latitude.
When using the UTM projection, make sure that the data is in the correct zone\(^2\). For data that transverses more than one zone, you must use a field that notes the zone for a location’s coordinates. Biotas will automatically record the proper zone if the conversion is to UTM in a field at the end of the spreadsheet. By default this field is called "UTMZone", and the field name can not be changed.

Access the UTM parameters by clicking on the parameters button in the Projection Conversion group once UTM is selected from the projection list.

\(^2\)Not all countries use a six degree zone width. Most notably are some African countries and some maps of Australia. Smaller zone widths are, in theory, intended to decrease distortion at zone edges. If you change the zone width from six degrees, the UTM zone will have to be adjusted accordingly. Unless you are trying to map to a specific map, or are not sure of the zone width you should use, it is best to use the standard zone width of six degrees.
Grids

Creating a Grid

Grids are used in many analyses in Biotas. Understanding how to create an appropriate grid is therefore important.

Grids are made up of quadrat. A quadrat is a convex polygon. Grid quadrats can be of three types: triangle (3 sides), square (4 sides), or a hexagon (6 sides). You may note that not all analyses allow all three grid type options to be selected.

Grid Types:

- **Triangle:** The triangle grid is a degenerate form of the hexagon (constructed by splitting up hexagons into 6 equal parts). Its utility lies in the fact that it represents an exhaustive interconnecting lattice over an area which can easily be extended to represent a third dimensional value at each vertex.

- **Square:** The square is perhaps the easiest field shape to construct as a sampling unit. Its dimensions can range from sub-meter plots to hectares. It is also the grid shape used by software to plot home range isopleth contours.

- **Hexagon:** The hexagon’s unique property over the triangle and the square in that the center of each hexagon is equidistant to all its neighboring hexagon center points. This means that analysis with hexagons do not have to weight diagonal center distance as with the square.

Grids are constructed as polygon shapes, not as line vectors. Therefore, they inherit all features of polygons including being able to have unique colors or labels, can be filtered, stratified or subseted and can have their vertices edited or the entire polygon can be moved on the canvas with CAD polygon functions. The only drawback to this design is that it can take some time to construct a grid if the quadrat size is very small relative to the total area of the grid.

Grid Size

Grids are constructed based on area or distances between grid quadrat centers. Only with the square quadrat is the center distance equal to the quadrat edge length. Center distances are relevant only in the horizontal direction for triangle quadrats, only in the horizontal and vertical direction for square quadrats, and for horizontal, vertical and diagonal directions for hexagon quadrats.

Grid size can sometimes be an arbitrary discision. One solution, provided if the Optimal Edge Length button is clicked, is to use the following formula for grid edge length:

\[s = \frac{N}{\sqrt{n}}\]

and then to adjust for center distance depending on the quadrat type selected. "N" is the number of points being used in a grid based analysis. If a grid is being constructed without reference to a point pattern, then this option will not be available.

s is one methodology that allows you to examine the effect of quadrat size on the statistical and practical conclusions of quadrat analysis.

In some analyses, there is not always a need to display a grid. If not, you can uncheck the "Plot Grid on Canvas" box.
Grid Colors

Grids quadrats (i.e. the cells) are polygon shapes with a record field of "Value". One uses of the Value record is to color grids quadrats along a color gradient. The color gradient is defined by selecting the start and end colors. An optional color boundary can also be selected.

Grid Confinement

Grids quadrats can be confined to any polygon overlay shape. Depending on the type of analysis, the Confinement tab in the Grid Definitions window may not be visible. If it is, you may confine grid quadrats to a polygon file by selecting an available polygon file in the list and choose one of the confinement options.

<table>
<thead>
<tr>
<th>Grid confinement options:</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
<tr>
<td>Polygons in the file will not be used to confine the grid quadrats.</td>
</tr>
<tr>
<td>Inclusive</td>
</tr>
<tr>
<td>Grid quadrats will only be created if they are completely within any of the polygons in the file.</td>
</tr>
<tr>
<td>Contained</td>
</tr>
<tr>
<td>Grid quadrats will only be created if at least one vertex is within any of the polygons in the file.</td>
</tr>
<tr>
<td>Exclusive</td>
</tr>
<tr>
<td>Grid quadrats will only be created if they are completely outside all of the polygons in the file.</td>
</tr>
</tbody>
</table>

To refine what polygons are used as confinement, the polygon file can be stratified or subseted prior to creating the grid.

Grid Limitations

Grids quadrats, or cells, are not natural sampling units. Therefore, they suffer from a degree of bias that is affected by the size of the quadrat. This fact has unfortunately been used by some to assume that grid based analysis are not reliable. While grid analysis is not without certain limitations, and is in some circumstances an inappropriate technique, it still maintains itself as an important form of data interpretation if used within its limitations.

A general rule when constructing quadrats, try to make them small relative to patch size. An optimal size may not be possible. Doing repeated quadrat analysis on a range of quadrat sizes can provide much ecological information. On can not usually apply statistical hypothesis testing to repeated measures due to lack of independence, but permutation comparisons can provide one measure of expected probability. In addition, because quadrat tests using a computer is a simple matter, one can select a single most appropriate quadrat size based on varying quadrat size on a separate sample data set before applying to the actual data set of interest.

Quadrat size is not the only limitation. Another is the choice of quadrat shape. A square quadrat is the most intuitive quadrat shape, but it suffers from the limitation that its adjoining quadrats on the diagonal do not have the same center distances than the adjoining quadrats in the horizontal and vertical direction. If quadrat distance matters (such as with Moran's I text) then this bias must be accounted for.
Simulated Point Patterns

Menu: Analysis > Modeling and Simulations > Simulated Data

Point patterns simulations are a means to create random, or not so random, data to test procedures, assumptions or models.

<table>
<thead>
<tr>
<th>Random point patterns methods fall into four main categories:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Simple distributions</td>
</tr>
<tr>
<td>2. Random walk and correlated movements</td>
</tr>
<tr>
<td>3. User defined, distributions</td>
</tr>
<tr>
<td>4. 1, 2 or 3 above within defined spatial limits</td>
</tr>
</tbody>
</table>

For any simulation assign a sample size and repeat count (how many unique data sets) for the simulation. The attempts factor is how many times beyond the given sample size should the program try to find data that satisfied the user defined or other complex random data sets. This value prevents the program from entering an endless loop that may be encountered with some simulations. A new point pattern is created and stored from the random parameters you select.

Each data set that is created may be treated as any other real data file, and any available Biotas function can be applied to it.

Simulated Data - Simple Distributions

Menu: Analysis > Modeling and Simulations > Simulated Data

Simple distributions may be used to create simple random data patterns. There is not need to create or write a formula in the formula window. If there is no formula written, Biotas will assume you just want to use the selected default distributions. All the simple distributions are random, but predictable to the extend that they have well defined statistical characteristics that are used to generate the points process.

<table>
<thead>
<tr>
<th>Simple distributions include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Normal (Gaussian)</td>
</tr>
<tr>
<td>2. Uniform</td>
</tr>
<tr>
<td>3. Triangle</td>
</tr>
<tr>
<td>4. Exponential</td>
</tr>
<tr>
<td>5. Epanechnikov</td>
</tr>
</tbody>
</table>

Simulated Data - Complex Distributions

Menu: Analysis > Modeling and Simulations > Simulated Data

Complex distributions are those that include addition processing beyond simply calculating a value from a standard random number generator.
Biotas includes three built in complex function. These are:

Clusters
This creates a aggregated point process where cluster centers are assigned a random location, and then a random number of items (within user defined limits) is assigned to each cluster. Therefore, there is spatial randomness at two levels, between clusters and within clusters.

The cluster function is: \(\text{RandomClusters}(sd, x, ss, min, max) \)

- \(sd \) = cluster standard deviation
- \(x \) = cluster mean size
- \(ss \) = cluster sample size
- \(min \) = range minimum
- \(max \) = range maximum

Random Walk
A Random walk is the most basic process to create spatially unpredictable data set. Points are added to the point process by adding a random value from a normal distribution with a default mean = 0 and a standard deviation value passed to the function. This process can "walk" in any direction and can quickly leave an intended boundary area. To contain this process to a more realistic boundary, should be applied.

Autoregressive Time Series
The time series point process is based on the correlation of prior data at any time "t" in the past, plus a random value (termed the "white noise"). These correlation parameters are passed to the function by means of an array of correlation values. The autoregressive series resembles a random walk but has a self containing feature that better limits it spatial movement.

You may also create with or without including using any combination of the available built in functions.

Simulated Data - User Defined Random Data

Menu: Analysis > Modeling and Simulations > Simulated Data

The simulated data unit is based on a Pascal script interpreter that allows the user to create a wide variety of user defined point pattern functions. If you do not wish to write your own functions, you can alternately use one of the Biotas supplied functions.

Writing a function in Biotas requires you to have a basic understanding of the Pascal language in general and of the small set of unique functions supplied by Biotas. Please see the Pascal script section for more information.

Simulated Data - Random Data Limits

Menu: Analysis > Modeling and Simulations > Simulated Data

While random point patterns derived from frequency distributions are a convenient and useful research tool, real data is rarely derived from mathematical formulas alone. Use of spatial areas is more likely to be related to some features of the landscape.

Biotas provides for such spatial use. The "Spatial Occurrence" tab is used to allow simulated data to be restricted to polygons in a landscape in a deterministic manner as defined by the user. That is, any percentage of points can be limited to any polygon type in the landscape. For instance, if a landscape polygon type has zero percent (0%) occurrence associated to it, no points in the simulated data will be placed in any polygon of this type. Total occurrence assignment can not exceed 100% for all selected polygon overlays. Any distribution, including user defined functions, can use this feature.
Permutations

Permutations are a method of comparing observed test results to other possible results using the same data. These comparisons are repeated many times (100 or more times) and the results of these comparisons can be used to construct a probability that the originally observed results were observed by chance. The end result is therefore similar to standard hypothesis testing. The benefit of permutations is that they often require no assumptions about the distribution of the data, making them very useful for ecological data sets where the assumption of normally distributed sample data is not valid.

It is often assumed you must perform thousands or permutations to have a valid conclusion. However, this is not necessarily true. You can prove this to yourself by trial. For instance, using 100 permutations, if there are 4 calculated values greater than the original data value, there will almost always be about 40 values greater with 1000 permutations. Therefore, it is often not necessary to perform an excessive number of permutations except to attain greater level of confidence in the probability: 100 permutations will give a probability level no greater than at 0.01, 1000 permutations will give a probability level greater than 0.01 but no greater than 0.001, and so on.

One problem with permutations is that specific formulas, based on the permutation comparison variable, must often be developed to provide accurate confidence intervals. A Students-t distribution standard error range is often used as a convenient substitute, but you should be aware that this does not always represent an exact confidence interval.

Data Permutation Example

Let's say you have two samples shown in the table at the bottom of this page. You want to determine if their means differ. We start then by stating the null hypothesis (Ho): the means of the two samples do not differ.
From the data we can calculate: Mean A = 2.099, Mean B = 2.475.

The classical approach would be to do a one tailed Students-t test. Doing so provides the following results for the probability that the two means do not differ: P = 0.033.

Conclusion: We would reject the null hypothesis. The means appear to be different.

To perform a permutation test of this data we need to decide on a comparison value between data permutations. One possible comparison, and the one we will use here, is the difference between the means of group A and B: 2.475 - 2.099 = 0.376. We will call this difference our original test value.

We then do the following procedure:

1. We randomize the values in each group. You can think of this as if we put all 20 values into a bag and randomly selecting values from the bag and placed them into either group A or group B.
2. We recalculate the mean of group A and B and find their difference in the same way did for the original test value. We will call this new difference our randomized test value.
3. We compare the difference of the randomized test value to the original test value according to the following principle:
 a. If the randomized test value is greater than the original test value we increment a greater than counter by 1.
 b. If the randomized test value is less than the original test value we
When we have repeated the above procedure 99 times we have a total of 100 permutations of the data (99 random permutations plus the original data order which is just considered another possible ordering of the data). We sum the "greater than counter" and the "equal to counter" and/or the "less than counter" and the "equal to counter", and divide by the number of total permutations that we have, which is 100 in this case.

This was done and the results were:

"greater than counter" = 2
"less than counter" = 97
"equal to counter" = 1 (our original test value)

Our one tailed test then becomes: ("greater than counter" + "equal to counter") / 100

By substituting in our above values, we get:

\[
\frac{(2 + 1)}{100} = 0.03
\]

Conclusion: We would reject the null hypothesis. The means appear to be different.

As can be seen, the permutation results closely match those from the Students-t test above, just as they should. The benefit of the permutation over the traditional test is that the permutation procedure required no assumptions about the distribution of the underlying sample data. The Students-t test assumes the sample data is normally distributed.

Table 1. Data for above tests.

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.19922</td>
<td>1.90127</td>
</tr>
<tr>
<td>1.75694</td>
<td>1.54578</td>
</tr>
<tr>
<td>1.57965</td>
<td>2.34959</td>
</tr>
<tr>
<td>2.34781</td>
<td>3.05796</td>
</tr>
<tr>
<td>2.23934</td>
<td>3.04972</td>
</tr>
<tr>
<td>1.52800</td>
<td>2.39111</td>
</tr>
<tr>
<td>2.40485</td>
<td>2.46916</td>
</tr>
<tr>
<td>2.33623</td>
<td>2.49030</td>
</tr>
<tr>
<td>2.00036</td>
<td>2.50799</td>
</tr>
<tr>
<td>2.59975</td>
<td>2.98979</td>
</tr>
</tbody>
</table>
Biotas includes the Interfuse Pascal script interpreter that allows you to create a wide variety of user defined functions using this powerful scripting language.

Although Pascal is not as widely a scripting language as others, this fact is based more on corporate structure and decisions than on the weakness or merits of any particular language. Any language has both positive and negative aspects and there are many positive aspects of Pascal, including its easy to understand syntax, that makes it an ideal scripting language.

Writing Pascal scripts in Biotas is relatively easy once you have mastered the basics of Pascal in general, and Biotas specific enhanced features. Both of which are themselves easy to learn.

Pascal Scripts - Basics

This tutorial is not intended to be an exhaustive coverage of all aspects available in the Pascal script used with Biotas. If you want to learn more about Pascal not covered here, you are encouraged to see your local book store, library or visit one of the many web sites on the world wide web for further information.

To begin to write scripts in Pascal, the first step is to learn some basic syntax. The most notable feature of Pascal syntax is the difference between an assignment operator, and a comparison operator. An assignment operator is the syntax used to set the value of a variable, while a comparison operator is testing if two variables are equal.

The Pascal assignment operator syntax is a colon followed by an equal sign. Such as:

```
MyVariable := 15;
```

The Pascal comparison operator is just an equal sign. Such as:

```
IF MyVariable = 15 THEN...
```

Also note that except in certain specific cases to be pointed out later, most script lines in Pascal end in a semicolon ";". With this basic knowledge, you can begin to write scripts in Biotas.

Pascal Scripts - Variables

The first topic to consider when working with Pascal scripts is to know that Pascal is a strongly typed language. A strongly typed language means all variables used in the program must be defined and assigned a type. The variables maintain this type throughout the script an can not be changed. This feature is ideal for a scripting language because it makes writing and debugging the script easier.

For instance, consider the following:

```
a := MyFunction;
```

In a language that is not strongly typed, if "a" was left untyped by the author of the script, then the value of "a" can be of any, unknown type (integer, text, date, etc.) depending only on what value "MyFunction" returns. So you would not know if you can then perform the operation "c = a * b" since that will not work if the value of "a" is text. To know what "a" can be means you have to know in advance what value the function "MyFunction" returns. This is fine if the
script is short, or you wrote it and you know what "MyFunction" returns, but it might be an interpretation nightmare if there are dozens or hundreds of functions to remember.

In Pascal the above example would be:

assign the type using the colon operator
\[a : integer; \]
call the function using the assignment operator
\[a := MyFunction; \]

Now it is clear that MyFunction will return an integer since "a" can only take an integer value.

You must assign a type to each variable or type before you use it. Constants are automatically typed depending on the value they are assigned.

The following data types are allowed

- **Boolean**: true or false value
- **Integer**: counting numbers, their negatives and zero
- **Double**: floating point or "decimal" numbers
- **String**: text value
- **TDateTime**: a value that holds both a date and time of day.

There are three basic types of Pascal assignments:

Constants, key word "const"

Example:
\[const \ Pi = 3.14159; \]

Variables, key word "var"

Example:
\[var \ Month : Integer; \ DayName : String; \]

Types (such as Records), key word "type"

Example:
\[type \ Score = Record \ High : Integer; \ Low : Integer; \ end; \]

Pascal Scripts – Structure

Lets say we want to build a script that adds two numbers. To do this we write a script that can process the numbers we want to add as variables and then adds these two numbers together.

To start our script, we first have to know the basic format of a script. A Pascal script starts with the directive keyword **program**, followed by the name of the program, followed by a semicolon. Example:

\[program AddNumbers; \]

The part of the script where script commands are written occurs in one of two areas. One is called the "main program" the other is in functions or procedures. We will first deal only with the "main program". The "main program" logic always starts with the key word **begin** and always ends with the key word **end** followed by a period ".". The period is a very special character here, since it tells the compiler that it has reached the end of the script. Example:

\[program AddNumbers; begin end. \]
We now just need to add the program logic to our script. We first need to create some variables. The logical first variable we need is a "result" variable that holds the sum of the two values. This is done using the already covered "var" key word. The "var" key word must be placed before the begin key word. In its most simple state our script then becomes:

```
program AddNumbers;
var
  Sum : Integer;
begin
  Sum := 11 + 12;
end. {period goes here, end of program}
```

We can now also assign our two numbers we are adding to variables themselves. This is for example purposes only since we assign the values to the variables in the logic of the script so variables are not expressly needed, but you can appreciate the purpose of assignment variables if you consider the assignment of values may represents possible values input from a user interface. Our script program now becomes:

```
program AddNumbers;
var    Sum, Number1, Number2 : Integer;
begin
  Number1 := 11;
  Number2 := 12;
  Sum := Number1 + Number2;
end. {period goes here, end of program}
```

This is a complete script program. We can further enhance this program by including a function to centralize the processing logic.

Pascal Scripts - Procedures and Functions

We continue our script development by adding a function to the script we began in the basics section.

In addition to the main program, there may be many functions and procedures that process local information. Like the main program, all functions and procedures are started and stopped using the key words begin and end. However, unlike the main program, the end of all procedures and functions are followed by a semicolon ";" rather than by a period. The structure to declare a procedure or function is as follows:

```
procedure procedure_name(passed_variables) ;
function function_name(passed_variables) : returned_value ;
```

The procedure type does not return a value, while the function type does. "(passed_variables)" is optional and can be left out. Passed variables are by convention the name of the variable, followed by a colon, followed by the variable type. If there is more than one passed variable, they are separated by a semicolon.

Example:

```
function XPlusY(x: Integer; y: Integer): Integer;
begin
  Result := x + y;
end; {semicolon goes here, end of function}
```

Continuing our script example from the basics section, we now combine the main program and the function "XPlusY" by calling the "XPlusY" function from the main program.
program AddNumbers;
function XPlusY(x: Integer; y: Integer): Integer;
begin
 Result := x + y;
end; {semicolon goes here, end of function}
var
 Sum, Number1, Number2 : Integer;
begin
 Number1 := 11;
 Number2 := 12;
 Sum := XPlusY(Number1, Number2);
end. {period goes here, end of program}

You may have noticed that many lines in a Pascal script also end in a semicolon. While the placement of the semicolon is not done in some places such as control statements, for now you may assume you always place a semicolon after each line except after the key word begin and after the end of the program, where a period is placed.

Pascal Scripts - Control Statements

Control statements exercise control on the flow of the script. This means you can use control statements to repeat sections of code, move out of code blocks test variable values, etc.

The FOR..DO statement. This is a loop statement that lets you repeat a block of code any number of times.

Example:

var
 i, Total : Integer;
begin
 Total := 0;
 FOR i := 0 TO 10 DO
 Total := Total + i;
end;

The control of the FOR statement is held by the count variable "i". The loop is repeated starting with i = 0 and ending at i = 10 for a total of 11 loops. Our result for Total = 45. Notice that Total was assigned a starting value of zero. You should always assign a starting value to variables as the value assigned by the compiler when the script is run need not necessarily be zero.

The WHILE..DO statement. This is a loop statement that lets you repeat a block of code any number of times without a count increment. The control of the WHILE statement is held by a comparison function you assign. When the comparison function returns true, the WHILE statement stops.

Example:

var
 Total : Integer;
begin
 Total := 0;
 WHILE Total < 45 DO
 Total := Total + 1;
end;

The loop is repeated starting Total = 0 and ending at Total = 45 for a total of 45 loops.
The **REPEAT..UNTIL** statement. This is a loop statement similar to the **WHILE** statement, except that the **REPEAT** statement's control statement is at the end, do the **REPEAT** statements internal logic will be activated at least once.

Example:

```plaintext
var
    Total : Integer;
begin
    Total := 46;
    **REPEAT**
        Total := Total + 1;
    **UNTIL** Total > 45;
end;
```

The loop is repeated starting Total = 46 and ending at Total = 47 for a total of 1 loop.

The **IF..THEN..ELSE** Statement. This it to compare variables for logical true or false statements.

Example:

```plaintext
var
    IsTrue : Boolean;
    Total : Integer;
begin
    Total := 46;
    IF Total = 45 THEN
        IsTrue := False
    ELSE IF Total >= 46 THEN
        IsTrue := True
    ELSE
        IsTrue := False
end;
```

The **IF** statement above will set IsTrue = True since the second **ELSE IF** statement is true. It is also possible to use the operators **AND** and **OR** to put the same logic on a single line.

Example:

```plaintext
var
    IsTrue : Boolean;
    Total : Integer;
begin
    Total := 46;
    IF (Total < 46) **OR** (Total > 46) **THEN**
        IsTrue := True
    ELSE
        IsTrue := False
end;
```

The IF statement above will set IsTrue = False since the combined IF statement is false and the default ELSE then sets the value.

The **IF, FOR** and **WHILE** control statements above process all script code until they encounter the next semicolon, which indicates the end of the line they have control over. It is possible for a control statement to maintain control over many lines of code by using the `begin` and `end` keywords as a control block.
Example:

```pascal
var
  i, Total : Integer;
begin
  Total := 0;
  FOR i := 0 TO 10 DO BEGIN
    Total := Total + i;
    Total := Total - i;
  END;
end;
```

In the above example, at the end of the `FOR` processing loop, `Total = 0`; The `REPEAT` control statement does not need a begin/end control block since it already has its own control block using `UNTIL`.

Pascal Scripts – Arrays

An array is a sequential collection of items of the same type. Arrays can contain either variables or types, but all items in the array must be of the same type. All arrays are assigned a size dynamically in the script.

Arrays are created by assignment as either a variable or a type.

Example:

```pascal
type
  TIntegerArray : Array of Integer;
var
  IntegerArray : Array of Integer;
  IntegerArray2 : TIntegerArray;

Notice that `IntegerArray` and `IntegerArray2` are both of type "Array Of Integer" since "TIntegerArray" is just a type reference to an "Array of Integer".

Because arrays can be of any type, they can also store a record type.

#### Example:

```pascal
type
 APoint = Record
 X : Integer;
 Y : Integer;
 end;
 TPointArray : Array of APoint;
var
 Points : TPointArray;

Before we can use the array, we must set its size using the `SetArrayLength` function before we assign any values to the array members. To set an array to a size of 5 items, we would write:

```
SetArrayLength(Points, 5);
```

To assign values to the array, we just use the array index notation "[index]". Array index starts at zero ("0"), not at one ("1"). If the array is a record array, we use dot notation to assign values to each record item for each index "[index].record_item". For the point array this would be:
Points[0].X := 4; // reference count starts at zero
Points[0].Y := 5;
Points[1].X := 8;
Points[1].Y := 12;
.... etc.

Array access is not checked for the correct range. To find the size of an array and to be sure you are within the array's range, such as when an array of unknown size is passed to a function, use the `GetArrayLength` function.

Arrays can only be passed to a function as a type. Therefore, use "TPointArray" in the function parameter list, not "Array of APoint".

In summary, the point array setup program would then be:

Example:

```pascal
program BuildPointArray;

type
  APoint = Record
    X : Integer;
    Y : Integer;
  end;

  TPointArray : Array of APoint;

procedure SetArrayValues(Points: TPointArray);
var
  i, ArrayLength : Integer;
begin
  ArrayLength := GetArrayLength(Points);
  FOR i := 0 TO ArrayLength DO BEGIN
    Points[i].X := i;
    Points[i].Y := i+2;
  END;
end;

var
  Points : TPointArray;
begin
  SetArrayValues(Points);
end.
```

Pascal Scripts – Conventions

This topic is to provide authorship standards and guidelines for writing scripts in Biotas. Script standards help to maintain human readability between authors of the scripts.

Give all variables, constants, types or functions descriptive names that everyone can read. Capitalize the first letter of all multiword names, or separate words with an underscore. Avoid using "Hungarian Notation", which is an archaic method used to conserve typing and computer memory space when computers had little available memory. At times Hungarian notation can be quite clear, but usually it is not. Not using Hungarian notation means more typing of long names, but it also makes the script readable by more people and easier to debug even for the script's author.

For example, write variable and function names like: `MeanVarianceProcedure`

But not like this: `meanvarianceprocedure`

Also, avoid Hungarian Notation like this: `mnvrpro`

Always give your script a program name that is both descriptive and a name that you believe will be unique. Adding your initials to the beginning of the program name followed by an
underscore can help to keep names unique. Unique names will help keep scripts from colliding with one another. Capitalize the first letter of all multiword names, or separate words with an underscore.

For example, John Doe would name a script like: `Program jd_SpeciesIndex;`

But not like this: `Program index;`

Add comments (using the //comment or {comment} methods) to your scripts that say what the script is doing. You may understand your script logic, but others may not. In six months, you may not either.

Add spaces before and after all math notations and assignment `":="` notation. This just makes it easier to read.

For example, do this: `Value := AxisX + AxisY + Cos(Angle1) / (Sin(Angle2) * Log(3));`

Avoid this: `Value:=AxisX+AxisY+Cos(Angle1)/(Sin(Angle2)*Log(3));`

Use temporary variables unless there is an imperative need for brevity (which is rare). Temporary variables makes program logic more clear. Local assigned variable types are easier to identify and follow than memorizing the intended result of function calls. Think of each function as its own world that should be totally understandable within its immediate reference.

For example, do this: `Size := GetArrayLength(Array); Total := Sum(Array); Average := Total / Size;`

Avoid this: `Average := Sum(Array) / GetArrayLength(Array);`

Avoid long procedures or functions. If you can not see the whole procedure or function on your screen at once, it is too long. Break it up into logical sub functions or procedures for specific task processing.

Use common sense when writing a script. Avoid being lazy with documentation. It will cost time later if extensive debugging is required.

Available Functions

Array Functions

function GetArrayLength(var v: array): Integer; Returns the length of a dynamic array. This is often used to iterate through the array items. Array index starts at zero.

procedure SetArrayLength(var v: array; i: Integer); Set the length of a dynamic array variable "v". This initializes the array variable and sets its length to "i". You must call this procedure before using a dynamic array.

Pascal Scripts - Math Functions

function Pi : Extended; Contant Pi Value

function Abs(e : Extended) : Extended; Absolute value of e

function Ln(X: Real): Extended; Natural log of X

function Log10(X: Extended): Extended; Log base 10 of X
function LnxP1(X: Extended): Extended; Natural log of \(X + 1 \). Use for values close to zero.

function Log2(X: Extended): Extended; Log base 2 of \(X \)

function LogN(N, X: Extended): Extended; Log base \(N \) of \(X \)

function Exp(X: Real): Real; Base \(e \) raised to \(X \)

function Sqr(X: Extended): Extended; Square root of \(X \)

Function Sqrt(e : Extended) : Extended; Square root of \(e \)

Pascal Scripts - Statistical Functions

function Sum(const AnArray: TArrayOfDouble): Extended; Returns the sum of elements in AnArray.

function SumInt(const AnArray : TArrayOfInteger): Integer; Returns the sum of elements in the integer array AnArray.

function MinValue(const AnArray : TArrayOfDouble): Double; Returns the minimum value of elements in AnArray.

function MaxValue(const AnArray : TArrayOfDouble): Double; Returns the maximum value of elements in AnArray.

function StdDev(const AnArray : TArrayOfDouble): Extended; Returns the sample standard deviation of elements in AnArray with a sample size divisor of \(N - 1 \).

function PopnStdDev(const AnArray : TArrayOfDouble): Extended; Returns the population standard deviation of elements in AnArray with a sample size divisor of \(N \).

function Variance(const AnArray : TArrayOfDouble): Extended; Returns the sample variance of elements in AnArray with a sample size divisor or \(N - 1 \).

function StdError(const AnArray : TArrayOfDouble): Extended; Returns the sample standard error of elements in AnArray.

function PopnVariance(const AnArray : TArrayOfDouble): Extended; Returns the population variance of elements in AnArray with a sample size divisor or \(N \).

String Functions

function FloatToStr(e: extended): string; Converts a floating point value into a string.

function IntToStr(i: Longint): string; Converts an integer value into a string.

function StrToInt(s: string): Longint; Converts a string into an integer.

function StrToIntDef(s: string; def: Longint): Longint; Converts a string into an integer. If the string cannot be converted into an integer, the value "def" is returned instead.

function Copy(s: string; ifrom, icount: Longint): string; Copies part of a string from the source string "s", starting at position "ifrom" and of length "icount" and returns the resulting string. "i" is short for "index". Example: NewString := Copy('buffalo bill', 5, 3); NewString = 'alo';

function Pos(substr, s: string): Longint; Locates the index position of the substring "substr" in the source string "s" and returns the value \(\geq 1 \) if true. If "substr" is not found in "s", then this function returns 0 as the result. Note that this Pos is a CASE sensitive function. Example: StringPosition := Pos("Buf", 'buffalo bill'); StringPosition = 0; Example:
\textit{StringPosition} := \textit{Pos}("buf", 'buffalo bill'); \textit{StringPosition} = 1;

\textbf{procedure Delete}(\textit{var s: string}; \textit{ifrom, icount: Longint}): \textit{string};\hspace{1em}\text{Deletes part of the source string "s", starting at position "ifrom" and of length "icount". "i" is short for "index". Example: \textit{NewString} := \textit{Delete}("buffalo bill", 5, 3); \textit{NewString} = "buff bill";}

\textbf{procedure Insert}(\textit{s: string}; \textit{var s2: string}; \textit{iapos: Longint}): \textit{string};\hspace{1em}\text{Inserts the string "s" into the source string "s2", starting at position "iapos" Example: \textit{NewString} := \textit{Insert}("alo", "buff bill", 5); \textit{NewString} = "buffalo bill";}

\textbf{function StrGet}(\textit{var S : String}; \textit{I : Integer}): \textit{Char}; \hspace{1em}C

\textbf{procedure StrSet}(\textit{c : Char}; \textit{I : Integer}; \textit{var s : String}); \hspace{1em}C

\textbf{function Uppercase}(\textit{s : string}): \textit{string};\hspace{1em}\text{Sets the string to all UPPER CASE letters. Useful with the Pos function, which is case sensitive. Example: \textit{StringPosition} := \textit{Pos}("BUF", \textit{UpperCase}("buffalo bill")); \textit{StringPosition} = 1;}

\textbf{function Lowercase}(\textit{s : string}): \textit{string};\hspace{1em}\text{Sets the string to all lower case letters. Useful with the Pos function, which is case sensitive.}

\textbf{function Trim}(\textit{s : string}): \textit{string};\hspace{1em}\text{Removes spaces infront of and after a string. Example: \textit{NewString} := \textit{Trim}(" buffalo bill "); \textit{StringPosition} = "buffalo bill";}

\textbf{function Length}(\textit{s : String}): \textit{Longint};\hspace{1em}\text{Returns the length of the string in characters. Example: \textit{StringLength} := \textit{Length}("buffalo bill"); \textit{StringLength} = 12;}

\textbf{procedure SetLength}(\textit{var S: String}; \textit{L: Longint}); \hspace{1em}C

\textbf{function StrToFloat}(\textit{s: string}): \textit{Extended}; \hspace{1em}C

\textbf{function FloatToStr}(\textit{e : Extended}): \textit{String}; \hspace{1em}C

\textbf{function Padl}(\textit{s : string}; \textit{l : longInt}): \textit{string};

\textbf{function Padr}(\textit{s : string}; \textit{l : longInt}): \textit{string};

\textbf{function Padz}(\textit{s : string}; \textit{l : longInt}): \textit{string};

\textbf{function Replicate}(\textit{c : char}; \textit{l : longInt}): \textit{string};

\textbf{function StringOfChar}(\textit{c : char}; \textit{l : longInt}): \textit{string};

\textbf{Trigonometry Functions}

\textbf{function Sin}(\textit{X : Extended}): \textit{Extended};\hspace{1em}\text{Trigonometric Sine of e. The value of X must be in radians.}

\textbf{function Cos}(\textit{X : Extended}): \textit{Extended};\hspace{1em}\text{Trigonometric Cosine of e. The value of X must be in radians.}

\textbf{function Tan}(\textit{X: Extended}): \textit{Extended};\hspace{1em}\text{Trigonometric Tangent of X. The value of X must be in radians.}

\textbf{function ArcCos}(\textit{X : Extended}): \textit{Extended};\hspace{1em}\text{Inverse of Cosine. X must be in the range -1 to 1. The return value will be in the range [0..Pi], in radians.}

\textbf{function ArcSin}(\textit{X : Extended}): \textit{Extended};\hspace{1em}\text{Inverse of Sine. X must be between -1 and 1. The return value will be in the range [-Pi/2..Pi/2], in radians.}
function ArcTan2(Y, X: Extended): Extended; Inverse of Tangent where Y and X are point on the unit circle. ArcTan2 returns the correct quadrant the point defined by Y, X is located within unit circle in the range from -Pi to Pi

function Cotan(X: Extended): Extended; Cotangent of X. X can not be = 0.

function Cosh(X: Extended): Extended; The hyperbolic cosine of X.

function Sinh(X: Extended): Extended; The hyperbolic Sine of X. The value X must be in radians.

function Tanh(X: Extended): Extended; The hyperbolic Tangent of X.

function ArcCosh(X: Extended): Extended; The inverse of the hyperbolic cosine of X.

function ArcSinh(X: Extended): Extended; The inverse of the hyperbolic sine of X.

function ArcTanh(X: Extended): Extended; The inverse of the hyperbolic tangent of X.

function DegToRad(Degrees: Extended): Extended; Converts Degrees to radians. Use in conjunction with many trigonometric functions that require radians as their input value.

function RadToDeg(Radians: Extended): Extended; Converts Radians to Degrees. Use in conjunction with many trigonometric functions that output their result in radians.

function GradToRad(Grads: Extended): Extended; Converts Gradients to Degrees. Use in conjunction with many trigonometric functions that require radians as their input value.

function RadToGrad(Radians: Extended): Extended; Converts Radians to Gradients. Use in conjunction with many trigonometric functions that output their result in radians. Pascal Scripts - Distribution and Random Functions

function Normal(Mean, StdDev: Extended): Extended; Calculates a normal distributed random data value with usging the assigned values of mean and standard deviation (StdDev).

function Uniform(Mean, Range: Extended): Extended; Calculates a uniformly distributed random data value with using the assigned values of mean and range.

function RandomTriangle(Mean, Range: Extended): Extended; Calculates a triangular distributed random data value with using the assigned values of mean and range.

function RandomExponential(Mean, Range: Extended): Extended; Calculates a exponential distributed random data value with using the assigned values of mean and range.

function RandomBinomial(Midpoint: Extended): Extended; Calculates a random binomial value (i.e. 0 or 1) based on the value of Midpoint.

function RandomEpanechnikov(Mean, ShapeFactor: Extended): Extended; Calculates a epanechnikov distributed random data value with using the assigned values of Mean and ShapeFactor.

function AddRandomDataPoint(X, Y: Double): Boolean; A special function using in Biotas random data scripts to add a random data point to a shape list. This function returns True if the point was successfully added to the shape list, False if not. Example: var i : Integer; X, Y : Double; begin FOR i := 1 TO 100 DO BEGIN X := Normal(0, 2); Y := Normal(0, 2); AddRandomDataPoint(X, Y); END; end;
procedure RandomUniformPoints(XCenter, XRange, YCenter, YRange: Extended; SampleSize: Integer); Creates a uniformly distributed bivariate (i.e. X and Y) point pattern with a SampleSize number of points and adds this as a shape list to the current canvas. To define the spatial limits of the point pattern, pass to the function the center of the desired point pattern as the XCenter and YCenter, and the horizontal point range and vertical point range as XRange and YRange.

procedure RandomNormalPoints(XMean, XStdDev, YMean, YStdDev: Extended; SampleSize: Integer); Creates a normaly distributed bivariate (i.e. X and Y) point pattern with a SampleSize number of points and adds this as a shape list to the current canvas.

procedure RandomTrianglePoints(XCenter, XRange, YCenter, YRange: Extended; SampleSize: Integer); Creates a triangle distributed bivariate (i.e. X and Y) point pattern with a SampleSize number of points and adds this as a shape list to the current canvas. To define the spatial limits of the point pattern, pass to the function the center of the desired point pattern as the XCenter and YCenter, and the horizontal point range and vertical point range as XRange and YRange.

procedure RandomExponentalPoints(XCenter, XRange, YCenter, YRange: Extended; SampleSize: Integer); Creates a exponential distributed bivariate (i.e. X and Y) point pattern with a SampleSize number of points and adds this as a shape list to the current canvas. To define the spatial limits of the point pattern, pass to the function the center of the desired point pattern as the XCenter and YCenter, and the horizontal point range and vertical point range as XRange and YRange.

procedure RandomEpanechnikovPoints(XMean, XShapeFactor, YMean, YShapeFactor: Extended; SampleSize: Integer); Creates a Epanechnikov distributed bivariate (i.e. X and Y) point pattern with a SampleSize number of points and adds this as a shape list to the current canvas. To define the spatial limits of the point pattern, pass to the function the center of the desired point pattern as the XMean and YMean, and the horizontal point range and vertical point range as XShapeFactor and YShapeFactor.

procedure RandomClusterPoints(XCenter, XRange, YCenter, YRange, ClusterSD, ClusterSize: Extended; SampleSize: Integer); Creates a clustered bivariate (i.e. X and Y) point pattern with a SampleSize number of points and adds this as a shape list to the current canvas. The clusters contain a random number of items N. N is calculated from a normal distribution which is defined by the assigned values of ClusterSize (i.e. mean cluster size) and ClusterSD (i.e. cluster size standard deviation). To define the spatial limits of the point pattern, pass to the function the center of the desired point pattern as the XCenter and YCenter, and the horizontal point range and vertical point range as XRange and YRange.

procedure RandomWalkPoints(XCenter, XRange, YCenter, YRange, StdDev: Extended; SampleSize: Integer); Creates a point pattern with a SampleSize number of points that randomly "walks" without any specific direction. The processes's white noise has a mean of zero and a standard deviation determined by StdDev. To define the spatial limits of the point pattern, pass to the function the center of the desired point pattern as the XCenter and YCenter, and the horizontal point range and vertical point range as XRange and YRange.

procedure RandomAutoregressivePoints(XCenter, XRange, YCenter, YRange, StdDev: Extended; SampleSize: Integer; const FixedConst: TArrayOfDouble); Creates a point pattern with a SampleSize number of points, based on an autoregressive random variable of order "p". The process's white noise has a mean of zero, and a standard deviation determined by SD. The order "p" of the data is determined by the size of the FixedConst array. A FixedArray size of 1 is a first order equation, a FixedArray size of 2 is a second order equation, etc. To define the spatial limits of the point pattern, pass to the function the center of the desired point pattern as the XCenter and YCenter, and the horizontal point range and vertical point range as XRange and YRange.
References

This is an incomplete list.

